Home About us Contact | |||
Homogenization Approach (homogenization + approach)
Selected Abstracts3D Architecture and Load Partition in Eutectic Al-Si Alloys,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Guillermo Requena Abstract The changes of the three dimensional architecture of a eutectic AlSi12 alloy during heat treatment are revealed by means of synchrotron holotomography. The non-destructive nature of the holotomography technique allows to analyze the same volumes in different thermal conditions. The results show a disintegration of the interconnected eutectic Si-lamellae into isolated elongated particles. The load carrying capacity of both types of Si morphologies is studied by in situ neutron diffraction during compression tests. The experimental results are compared to those obtained using a micromechanical model developed for metal matrix composites based on a homogenization approach. The correlation between experiments and calculations shows that the interconnectivity of Si must be considered to account for the strength exhibited by the eutectic alloy. The present study bridges the gap between the already available two-dimensional studies of architecture and properties of the binary AlSi12 alloy and new three-dimensional studies of more complex systems based on this alloy. [source] A homogenization method for estimating the bearing capacity of soils reinforced by columnsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 10 2005B. Jellali Abstract The ultimate bearing capacity problem of a strip foundation resting on a soil reinforced by a group of regularly spaced columns is investigated in the situation when both the native soil and reinforcing material are purely cohesive. Making use of the yield design homogenization approach, it is shown that such a problem may be dealt with as a plane strain yield design problem, provided that the reinforced soil macroscopic strength condition has been previously determined. Lower and upper bound estimates for such a macroscopic criterion are obtained, thus giving evidence of the reinforced soil strong anisotropy. Performing the upper bound kinematic approach on the homogenized bearing capacity problem, by using the classical Prandtl's failure mechanism, makes it then possible to derive analytical upper bound estimates for the reinforced foundation bearing capacity, as a function of the reinforced soil parameters (volume fraction and cohesion ratio), as well as of the relative extension of the reinforced area. It is shown in particular that such an estimate is closer to the exact value of the ultimate bearing capacity, than that derived from a direct analysis which implicitly assumes that the reinforced soil is an isotropic material. Copyright © 2005 John Wiley & Sons, Ltd. [source] Determination of rock mass strength properties by homogenizationINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2001A. Pouya Abstract A method for determining fractured rock mass properties is presented here on the basis of homogenization approach. The rock mass is considered to be a heterogeneous medium composed of intact rock and of fractures. Its constitutive model is studied numerically using finite element method and assimilating the fractures to joint elements (Coste, Comportement Thermo-Hydro-Mécanique des massifs rocheux fracturés. Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Paris, 1997). The method has been applied to a granite formation in France. Geological data on different families of fractures have been used for the statistical representation of the fractures. A mesh-generating tool for the medium with high density of fractures has been developed. The mechanical behaviour of the rock mass (elasticity, ultimate strength and hardening law) has been determined assuming linear elasticity and Mohr,Coulomb strength criterion both for the intact rock and the fractures. Evolution of the mechanical strength in different directions has been determined as a function of the mean stress, thanks to various numerical simulations. The mechanical strength appears to be anisotropic due to the preferential orientation of the fractures. The numerical results allowed us to determine an oriented strength criterion for the homogenized rock mass. A 2D constitutive law for the homogenized medium has been deduced from numerical data. A 3D extension of this model is also presented. Copyright © 2001 John Wiley & Sons, Ltd. [source] Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 11 2002Christian Miehe Abstract The paper investigates computational procedures for the treatment of a homogenized macro-continuum with locally attached micro-structures of inelastic constituents undergoing small strains. The point of departure is a general internal variable formulation that determines the inelastic response of the constituents of a typical micro-structure as a generalized standard medium in terms of an energy storage and a dissipation function. Consistent with this type of inelasticity we develop a new incremental variational formulation of the local constitutive response where a quasi-hyperelastic micro-stress potential is obtained from a local minimization problem with respect to the internal variables. It is shown that this local minimization problem determines the internal state of the material for finite increments of time. We specify the local variational formulation for a setting of smooth single-surface inelasticity and discuss its numerical solution based on a time discretization of the internal variables. The existence of the quasi-hyperelastic stress potential allows the extension of homogenization approaches of elasticity to the incremental setting of inelasticity. Focusing on macro-strain-driven micro-structures, we develop a new incremental variational formulation of the global homogenization problem where a quasi-hyperelastic macro-stress potential is obtained from a global minimization problem with respect to the fine-scale displacement fluctuation field. It is shown that this global minimization problem determines the state of the micro-structure for finite increments of time. We consider three different settings of the global variational problem for prescribed linear displacements, periodic fluctuations and constant stresses on the boundary of the micro-structure and discuss their numerical solutions based on a spatial discretization of the fine-scale displacement fluctuation field. The performance of the proposed methods is demonstrated for the model problem of von Mises-type elasto-visco-plasticity of the constituents and applied to a comparative study of micro-to-macro transitions of inelastic composites. Copyright © 2002 John Wiley & Sons, Ltd. [source] Radiosonde temperature trends and their uncertainties over eastern China,INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2008Yanjun Guo Abstract Trends and uncertainty in radiosonde temperature records for six sample stations in eastern China are assessed. Results from a complex approach using metadata and a two-phase regression (M-TPR) to capture known and unknown metadata events respectively are compared with an ensemble of possible solutions generated by the Met Office automated homogenization system (QUARC). Independent satellite records from the Microwave Sounding Unit (MSU) record are used to validate breakpoints over the satellite era. Differences in the treatment of metadata and the strictness of the statistical breakpoint detection methods used lead to relatively poor agreement in breakpoint identification. Agreement in long-term (1958,2003) trends in the homogenized data was found to result from a fortuitous cancellation of large differences in the pre- and post-satellite era trends between the two approaches. A consideration of independent MSU satellite data lends some credence to the presence and calculated magnitude of many of the assigned breakpoints that were not associated with recorded metadata events, in the later part of the record. However, it also highlights that neither of the approaches is likely to be perfect at identifying breaks. Improved metadata are likely to prove vital in confirming the presence of these breaks and hence the veracity of the various homogenization approaches to data for eastern China. Copyright © 2007 Royal Meteorological Society [source] |