HOMO

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of HOMO

  • early homo
  • genus homo

  • Terms modified by HOMO

  • homo energy
  • homo energy level
  • homo level

  • Selected Abstracts


    Density-Functional Calculation of the 183W and 17O NMR Chemical Shifts for Large Polyoxotungstates

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 6 2006
    Jose Gracia
    Abstract A phosphane sulfate relativistic DFT method (ZORA)has been used to calculate the 183W and 17O NMR chemicalshifts for large polyoxotungstates, including W6O192,,CH3OTiW5O183,, W5O18WIINO3,, W10O324,, ,-,-,-XW12O40n,, ,-PW9O28Br63,, P2W18O626,, PW2O143,, and W7O246,, based on their optimized molecular structures. Despite sizeable deviations between the calculated and experimental values, the calculations correctly reproduce the trends in the change of the chemical shift for both nuclei. As expected, the diamagnetic term is almost constant throughout the whole series. The change in the chemical shifts is shown to be determined by the paramagnetic term, which depends on the electronic structure of the whole anion under study and, in particular, on the local geometry around a given tungsten atom. On the other hand, there is no correlation between the chemical shift and HOMO,LUMO gap, showing that deeper occupied levels and several unoccupied orbitals play an important role in the paramagnetic term. However, analysis of the components of the paramagnetic shielding has shown that the most significant transitions determining the change of both 183W and 17O NMR chemical shifts for anions consisting of tungsten and oxygen atoms are the occupied,occupied and not the occupied,virtual ones.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    A Theoretical Investigation of Substituent Effects on the Absorption and Emission Properties of a Series of Terpyridylplatinum(II) Acetylide Complexes

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 10 2005
    Xiao-Juan Liu
    Abstract A comprehensive calculational investigation has been carried out on a series of complexes of the type [(terpyridyl-R1)Pt(C,C-R2)], where terpyridyl-R1 is a series of substituted 2,2':6',2"-terpyridyl ligands and C,C-R2 is a series of substituted acetylide ligands. In one series of complexes (I), the energy of the electronic excited state is varied by changing the substituents on the terpyridyl ligand (R1). In a second series of complexes (II), this electronic structure variation is obtained by changing the para substituents (R2) of the acetylide ligand. The effect of varying the substituents on the lowest-energy excited states of the complexes has been assessed by calculating their electronic structures and excitation energies. We anticipated that introduction of electron-withdrawing substituents on the terpyridyl ligand will benefit the LLCT (or MLCT) and prohibit the nonradiative pathways via d-d transitions in these complexes; introduction of electron-donating substituents on the acetylide ligand can also prohibit the nonradiative pathways by increasing the energy gaps between the HOMO,LUMO and d-d transitions. The results also reveal that the lowest-energy excitations of all complexes of series I and IIa,b complexes are dominated by a ,(C,C),,,,*(terp) (LLCT) transition mixed with some energetically d,(Pt),,,terpyridyl (MLCT) transition. However, for the complexes IIc,IId, in which phenyl rings are introduced on the acetylide ligand, the lowest-lying absorptions of IIc and IId are predominately LLCT in character, with less MLCT mixture, due to a lower contribution of the Pt(d) orbital to the HOMO, while for IIe, with a stronger donor on the acetylide, the lowest-lying absorption is completely LLCT in character. The absorption and emission calculations using the TDDFT method are based on the optimized geometries obtained at the B3LYP/LanL2DZ and CIS/LanL2DZ levels, respectively. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    Synthesis and Characterization of Mixed Phthalocyaninato and meso -Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes , Revealing the Origin of Their Electronic Absorptions

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2004
    Xuan Sun
    Abstract Two series of mixed phthalocyaninato and porphyrinato rare earth(III) triple-decker complexes [M2(Pc)(TClPP)2] (1a,10a) and [M2(Pc)2(TClPP)] (1b,11b) [M = Y, La,Er except Ce and Pm; Pc = phthalocyaninate; TClPP = tetrakis(4-chlorophenyl)porphyrinate] have been prepared by treating the half-sandwich complexes [M(TClPP)(acac)] (acac = acetylacetonate), generated in situ from [M(acac)3]·nH2O and H2(TClPP), with Li2(Pc). All the triple-decker complexes have been characterized by a wide range of spectroscopic and electrochemical methods. The molecular structures of [M2(Pc)(TClPP)2] (M = Y, Ho) have also been determined, and show a symmetrical disposition of ligands, with two outer domed TClPP and one inner Pc rings. A systematic investigation of the optical and electrochemical data of these complexes has revealed the nature of the HOMO and LUMO, as well as the origin of the electronic absorptions of these triple-decker complexes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Selective Tuning of the HOMO,LUMO Gap of Carbazole-Based Donor,Acceptor,Donor Compounds toward Different Emission Colors

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 9 2010
    Huaqiang Zhang
    Abstract Carbazole-based donor,acceptor compounds with tunable HOMO,LUMO gaps were synthesized by Suzuki and Sonogashira cross-coupling reactions. Their optical and electrochemical properties were fully characterized. The results show that materials with different emission colors ranging from blue to green to orange could be obtained. The experimental results were also supported by theoretical calculations. [source]


    Synthesis and Physical Chemistry of s -Tetrazines: Which Ones are Fluorescent and Why?

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 35 2009
    Yong-Hua Gong
    Abstract New fluorescent tetrazines have been prepared and their electrochemistry and fluorescence efficiency evaluated. The occurrence of fluorescence as well as the wavelength were found to be strongly dependent on the substituents, which have to be electronegative heteroatoms. This has been rationalized through a computational study that showed that the crucial factor is the nature of the HOMO, which determines the existence or not of fluorescence. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Development of Pharmaceutical Drugs, Drug Intermediates and Ingredients by Using Direct Organo-Click Reactions

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 6 2008
    Dhevalapally B. Ramachary
    Abstract Here we report on our studies of the use of combinations of amino acids, amines, K2CO3 or Cs2CO3 and CuSO4/Cu for catalysing green cascade reactions. We aimed to prepare the highly reactive and substituted olefin species 7 and 8, under very mild and environmentally friendly conditions, thus giving the hydrogenated products 10 and 12 through the action of Hantzsch ester (4) by self-catalysis through decreasing the HOMO,LUMO energy gaps between olefins 7/8 and Hantzsch ester (4) through biomimetic reductions. Highly useful compounds 10 to 14 were assembled from simple substrates such as aldehydes 1, ketones 2, CH acids 3, Hantzsch ester (4) and alkyl halides 5 by diversity-oriented green synthesis involving cascade olefination/hydrogenation (O/H), olefination/hydrogenation/alkylation (O/H/A) and hydrogenation/olefination/hydrogenation (H/O/H) reaction sequences in one-pot fashion with stereospecific organo- and organo-/metal-carbonate catalysis. Highly functionalized diverse compounds such as 10 to 14 are biologically active products and have found wide applications as pharmaceutical drugs, drug intermediates and drug ingredients. For the first time in organocatalysis, we report the O/H/A/TE reaction to furnish high yields of transesterification products 11 by simply mixing the reactants under proline/K2CO3 catalysis conditions. Additionally, a novel organocatalytic H/O/H reaction sequence for the synthesis of alkyl-substituted aromatics has been developed. Furthermore, for the first time we have developed organocatalysed cascade olefination/hydrogenation/hydrolysis (O/H/H) reactions to furnish highly useful materials such as 2-oxochroman-3-carboxylic acid (14kc) and 2-amino-4H -chromene-3-carbonitrile (14kj) in good yields. Experimentally simple and environmentally friendly organocatalytic two-carbon homologation through cascade O/H/H reactions of aldehydes 1, Meldrum's acid (3c), Hantzsch ester (4) and acetic acid/triethylamine in ethanol has been demonstrated. Additionally, we have developed a green synthesis of the highly substituted 1,2,3-triazole 17 from simple substrates through a two-step combination of olefination/hydrogenation/alkylation and Huisgen cycloaddition reaction sequences under stereospecific organocopper catalysis conditions. In this paper we have found strong support for our hypothesis that, "decreasing the HOMO,LUMO energy gap between olefins 7/8 and Hantzsch ester (4) will drive the biomimetic hydrogenation reaction by self-catalysis". This self-catalysis was further confirmed with many varieties of examples.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


    A Novel Bis(zinc,porphyrin),Oxoporphyrinogen Donor,Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 3 2006
    Jonathan P. Hill
    Abstract The first example of a porphyrin-quinonoid donor,acceptor triad featuring (tetraphenylporphinato)zinc(II) moieties covalently attached to an oxoporphyrinogen through its macrocyclic nitrogen atoms is reported. This arrangement of chromophores results in an interesting interplay between the electron-donating zinc,porphyrin(s) and the electron/energy accepting oxoporphyrinogen. The optical absorption of the triad reveals features corresponding to both the donor and acceptor entities. The geometry and electronic structure of the triad deduced from B3LYP/3-21G(*) calculations reveal an absence of inter-chromophoric interactions and localization of the HOMO on one zinc,porphyrin group and the LUMO on the oxoporphyrinogen scaffold. The electrochemical redox states of the triad were established from a comparative electrochemistry of the triad and the reference compounds. Both steady-state and time-resolved emission studies revealed quenching of the singlet excited state of zinc,porphyrin in the triad, and the free-energy calculations performed using Weller's approach indicate the possibility of electron transfer from the singlet excited zinc,porphyrin group to the oxoporphyrinogen in polar solvents. Time-resolved fluorescence studies reveal excited state energy transfer from zinc,porphyrin to oxoporphyrinogen in nonpolar solvents, while nanosecond transient absorption studies combined with time-resolved fluorescence studies in polar solvents are indicative of the occurrence of photoinduced charge separation from the singlet excited zinc,porphyrin to the oxoporphyrinogen. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Synthesis, Morphology, and Properties of Poly(3-hexylthiophene)- block -Poly(vinylphenyl oxadiazole) Donor,Acceptor Rod,Coil Block Copolymers and Their Memory Device Applications

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
    Yi-Kai Fang
    Abstract Novel donor,acceptor rod,coil diblock copolymers of regioregular poly(3-hexylthiophene) (P3HT)- block -poly(2-phenyl-5-(4-vinylphenyl)-1,3,4-oxadiaz-ole) (POXD) are successfully synthesized by the combination of a modified Grignard metathesis reaction (GRIM) and atom transfer radical polymerization (ATRP). The effects of the block ratios of the P3HT donor and POXD pendant acceptor blocks on the morphology, field effect transistor mobility, and memory device characteristics are explored. The TEM, SAXS, WAXS, and AFM results suggest that the coil block fraction significantly affects the chain packing of the P3HT block and depresses its crystallinity. The optical absorption spectra indicate that the intramolecular charge transfer between the main chain P3HT donor and the side chain POXD acceptor is relatively weak and the level of order of P3HT chains is reduced by the incorporation of the POXD acceptor. The field effect transistor (FET) hole mobility of the system exhibits a similar trend on the optical properties, which are also decreased with the reduced ordered P3HT crystallinity. The low-lying highest occupied molecular orbital (HOMO) energy level (,6.08 eV) of POXD is employed as charge trap for the electrical switching memory devices. P3HT- b -POXD exhibits a non-volatile bistable memory or insulator behavior depending on the P3HT/POXD block ratio and the resulting morphology. The ITO/P3HT44 - b - POXD18/Al memory device shows a non-volatile switching characteristic with negative differential resistance (NDR) effect due to the charge trapped POXD block. These experimental results provide the new strategies for the design of donor-acceptor rod-coil block copolymers for controlling morphology and physical properties as well as advanced memory device applications. [source]


    Triplet Formation in Fullerene Multi-Adduct Blends for Organic Solar Cells and Its Influence on Device Performance

    ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
    Clare Dyer-Smith
    Abstract In organic solar cells, high open circuit voltages may be obtained by choosing materials with a high offset between the donor highest occupied molecular orbital (HOMO) and acceptor lowest unoccupied molecular orbital (LUMO). However, increasing this energy offset can also lead to photophysical processes that compete with charge separation. In this paper the formation of triplet states is addressed in blends of polyfluorene polymers with a series of PCBM multi-adducts. Specifically, it is demonstrated that the formation of such triplets occurs when the offset energy between donor ionization potential and acceptor electron affinity is ,1.6 eV or greater. Spectroscopic measurements support a mechanism of resonance energy transfer for triplet formation, influenced by the energy levels of the materials, but also demonstrate that the competition between processes at the donor,acceptor interface is strongly influenced by morphology. [source]


    Oxygen-Terminated Nanocrystalline Diamond Film as an Efficient Anode in Photovoltaics

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
    Candy Haley Yi Xuan Lim
    Abstract The potential of using p-doped nanocrystalline diamond as the anode for organic solar cells, because of its outstanding photostability and well-matched energetics with organic dyes, is demonstrated. The interface dipole and open-circuit potential can be tuned by varying the surface termination on diamond. Oxygenated nanocrystalline diamond (O-NCD) exhibits the best photocurrent conversion among all the surface-treated electrodes studied in this work because of its large open-circuit potential. The good energy alignment of the valence band of O-NCD with the HOMO of poly(3-hexylthiophene), as well as its p-doped characteristics, suggest that O-NCD can replace the hole transport layer, such as PEDOT:PSS, needed for efficient performance on indium tin oxide (ITO) electrodes. If the sheet resistance and optical transparency on NCD can be further optimized, chemical-vapor-deposited diamond electrodes may offer a viable alternative to ITO and fluorinated tin oxide (FTO). [source]


    Conjugated Polymer Based on Polycyclic Aromatics for Bulk Heterojunction Organic Solar Cells: A Case Study of Quadrathienonaphthalene Polymers with 2% Efficiency

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
    Shengqiang Xiao
    Abstract Polycyclic aromatics offer great flexibility in tuning the energy levels and bandgaps of resulting conjugated polymers. These features have been exploited in the recent examples of benzo[2,1- b:3,4- b']dithiophene (BDT)-based polymers for bulk heterojunction (BHJ) photovoltaics (ACS Appl. Mater. Interfaces2009, 1, 1613). Taking one step further, a simple oxidative photocyclization is used here to convert the BDT with two pendent thiophene units into an enlarged planar polycyclic aromatic ring,quadrathienonaphthalene (QTN). The reduced steric hindrance and more planar structure promotes the intermolecular interaction of QTN- based polymers, leading to increased hole mobility in related polymers. As-synthesized homopolymer (HMPQTN) and donor,acceptor polymer (PQTN - BT) maintain a low highest occupied molecular orbital (HOMO) energy level, ascribable to the polycyclic aromatic (QTN) moiety, which leads to a good open-circuit voltage in BHJ devices of these polymers blended with PCBM ([6,6]-phenyl-C61 -butyric acid methyl ester; HMPQTN: 0.76,V, PQTN - BT: 0.72,V). The donor,acceptor polymer (PQTN - BT) has a smaller optical bandgap (1.6,eV) than that of HMPQTN (2.0,eV), which explains its current (5.69,mA,cm,2) being slightly higher than that of HMPQTN (5.02,mA,cm,2). Overall efficiencies over 2% are achieved for BHJ devices fabricated from either polymer with PCBM as the acceptor. [source]


    Tuning the Optoelectronic Properties of Carbazole/Oxadiazole Hybrids through Linkage Modes: Hosts for Highly Efficient Green Electrophosphorescence

    ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
    Youtian Tao
    Abstract A series of bipolar transport host materials: 2,5-bis(2-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o -CzOXD) (1), 2,5-bis(4-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (p -CzOXD) (2), 2,5-bis(3-(9H -carbazol-9-yl)phenyl)-1,3,4-oxadiazole (m -CzOXD) (3) and 2-(2-(9H -carbazol-9-yl)phenyl)-5-(4-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (op -CzOXD) (4) are synthesized through simple aromatic nucleophilic substitution reactions. The incorporation of the oxadiazole moiety greatly improves their morphological stability, with Td and Tg in the range of 428,464,°C and 97,133,°C, respectively. The ortho and meta positions of the 2,5-diphenyl-1,3,4-oxadiazole linked hybrids (1 and 3) show less intramolecular charge transfer and a higher triplet energy compared to the para-position linked analogue (2). The four compounds exhibit similar LUMO levels (2.55,2.59,eV) to other oxadiazole derivatives, whereas the HOMO levels vary in a range from 5.55,eV to 5.69,eV, depending on the linkage modes. DFT-calculation results indicate that 1, 3, and 4 have almost complete separation of their HOMO and LUMO levels at the hole- and electron-transporting moieties, while 2 exhibits only partial separation of the HOMO and LUMO levels possibly due to intramolecular charge transfer. Phosphorescent organic light-emitting devices fabricated using 1,4 as hosts and a green emitter, Ir(ppy)3 or (ppy)2Ir(acac), as the guest exhibit good to excellent performance. Devices hosted by o -CzOXD (1) achieve maximum current efficiencies (,c) as high as 77.9,cd A,1 for Ir(ppy)3 and 64.2,cd A,1 for (ppy)2Ir(acac). The excellent device performance may be attributed to the well-matched energy levels between the host and hole-transport layers, the high triplet energy of the host and the complete spatial separation of HOMO and LUMO energy levels. [source]


    Effect of Electric Field on Coulomb-Stabilized Excitons in Host/Guest Systems for Deep-Blue Electrophosphorescence

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Stephan Haneder
    Abstract Here, a study of the electric field induced quenching on the phosphorescence intensity of a deep-blue triplet emitter dispersed in different host materials is presented. The hosts are characterized by a higher triplet excitonic level with respect to the emitter, ensuring efficient energy transfer and exciton confinement, whereas they differ in the highest occupied molecular orbital (HOMO) alignment, forming type I and type II host/guest heterostructures. While the type I structure shows negligible electric field induced quenching, a quenching up to 25% for the type II at a field of 2,MV/cm is reported. A similar quenching behaviour is also reported for thin films of the pure emitter, revealing an important luminescence loss mechanism for aggregated emitter molecules. These results are interpreted by considering Coulomb stabilized excitons in the type II heterostructure and in the pure emitter, that become very sensitive to dissociation upon application of the field. These results clarify the role of external electric field quenching on the phosphorescence of triplet emitters and provide useful insights for the design of deep-blue electrophosphorescent devices with a reduced efficiency roll-off. [source]


    Energy-Modulated Heterostructures Made with Conjugated Polymers for Directional Energy Transfer and Carrier Confinement,

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007
    R. Favarim
    Abstract In this paper we demonstrate that multilayer structures with modulated bandgaps can be used for efficient energy transfer and carrier confinement inside a nanostructured film of a light-emitting polymer. The films were produced with the layer-by-layer technique (LbL) with a poly(p -phenylene vinylene) (PPV) precursor and a long chain dodecylbenzenesulfonate ion (DBS). DBS is incorporated selectively into the precursor chain, and with a rapid, low temperature conversion process (100,°C) superstructures with variable HOMO,LUMO gap could be formed along the deposition direction by changing the DBS concentration. Structures with different stair-type energy modulations were produced, which are thermally stable and reproducible, as demonstrated by UV-VIS. absorption measurements. Energy differences of up to 0.5,eV between the lowest and highest conjugated layers inside the stair structure could be achieved, which was sufficient to guide the excitation over long distances to the lower bandgap layer. [source]


    New Ruthenium Complexes Containing Oligoalkylthiophene-Substituted 1,10-Phenanthroline for Nanocrystalline Dye-Sensitized Solar Cells,

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2007
    C.-Y. Chen
    Abstract Two new ruthenium complexes [Ru(dcbpy)(L)(NCS)2], where dcbpy is 4,4,-dicarboxylic acid-2,2,-bipyridine and L is 3,8-bis(4-octylthiophen-2-yl)-1,10-phenanthroline (CYC-P1) or 3,8-bis(4-octyl-5-(4-octylthiophen-2-yl)thiophen-2-yl)-1,10-phenanthroline (CYC-P2), are synthesized, characterized by physicochemical and semiempirical computational methods, and used as photosensitizers in nanocrystalline dye-sensitized solar cells. It was found that the difference in light-harvesting ability between CYC-P1 and CYC-P2 is associated mainly with the location of the frontier orbitals, in particular the highest occupied molecular orbital (HOMO). Increasing the conjugation length of the ancillary ligand decreases the energy of the metal-to-ligand charge transfer (MLCT) transition, but at the same time reduces the molar absorption coefficient, owing to the HOMO located partially on the ancillary ligand of the ruthenium complex. The incident photon-to-current conversion efficiency curves of the devices are consistent with the MLCT band of the complexes. Therefore, the overall efficiencies of CYC-P1 and CYC-P2 sensitized cells are 6.01 and 3.42,%, respectively, compared to a cis- di(thiocyanato)-bis(2,2,-bipyridyl)-4,4,-dicarboxylate ruthenium(II)-sensitized device, which is 7.70,% using the same device-fabrication process and measuring parameters. [source]


    Substituted 1,3,2,4-benzodithiadiazines: Novel derivatives, by-products, and intermediates,

    HETEROATOM CHEMISTRY, Issue 7 2001
    Alexander Yu.
    The synthesis of the title compounds 1 by 1:1 condensation of ArNSNSiMe3 2 with SCl2 followed by intramolecular ortho-cyclization of each [ArNSNSCl] intermediate is complicated by further reaction of 1 with SCl2 to give Herz salts 3. With the 2:SCl2 ratio of 2:1, the formation of by-products 3 is reduced and novel compounds 1 are accessible. With ortho-I containing starting material 2j, the parent compound 1s is obtained as the result of an unexpected I, not H, substitution. The rate of the 1 + SCl2 reaction depends upon a substituent's position, and the minor 8-R isomers 1l,p (R = Br, I) are isolated for the first time from mixtures with the major 6-R isomers due to reduced reactivity toward SCl2. The synthesized compounds 1,3 are characterized by multinuclear (including nitrogen) NMR and X-ray crystallography. According to the X-ray diffraction data, 1j (6-Br) and 1k (7-Br) derivatives are planar, whereas 1i (5-Br) and 1l (8-Br) are bent along the S1···N4 line by ,5° and ,4°, respectively, and the 1r (7-OCH3) derivative is planar in contrast to the known 5-OCH3 isomer, which possesses a significantly folded heterocycle. The distortion of the planar geometry of some compounds 1 is interpreted in terms of a pseudo-Jahn-Teller effect as the result of ,-highest occupied molecular orbital (HOMO) ,*-(LUMO) lowest unoccupied molecular orbital + 1 mixing in a planar conformation. The 2p compound is the first structurally defined Ar,N = S = N,SiMe3 azathiene. The compound Ar,N = S = N,S,NH-Ar 6 modeling the aforementioned intermediate has been isolated and structurally characterized. We describe the attempts to synthesize compounds 1 from 2-aminobenzenethiols and (SN)4 and from salts 3 and Me3SiN3, and we discuss the reaction pathways. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:563,576, 2001 [source]


    Solution-Processable Carbazole-Based Conjugated Dendritic Hosts for Power-Efficient Blue-Electrophosphorescent Devices

    ADVANCED MATERIALS, Issue 48 2009
    Junqiao Ding
    A novel class of hosts suitable for solution processing has been developed based on a conjugated dendritic scaffold. By increasing the dendron generation, the highest occupied molecular orbital (HOMO) energy level can be tuned to facilitate hole injection, while the triplet energy remains at a high level, sufficient to host high-energy-triplet emitters. A power-efficient blue-electrophosphorescent device based on H2 (see figure) is presented. [source]


    Kinetic and mechanistic investigation into the influence of chelate substituents on the substitution reactions of platinum(II) terpyridine complexes

    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 12 2008
    Deogratius Jaganyi
    The substitution kinetics of the complexes [Pt{4,-(o -CH3 -Ph)-terpy} Cl]SbF6 (CH3PhPtCl(Sb)), [Pt{4,-(o -CH3 -Ph)-terpy}Cl]CF3SO3 (CH3PhPtCl(CF)), [Pt(4,-Ph-terpy)Cl]SbF6 (PhPtCl), [Pt(terpy)Cl]Cl·2H2O (PtCl), [Pt{4,-(o -Cl-Ph)-terpy}Cl]SbF6 (ClPhPtCl), and [Pt{4,-(o -CF3 -Ph)-terpy}Cl]SbF6 (CF3PhPtCl), where terpy is 2,2,:6,,2,-terpyridine, with the nucleophiles thiourea (TU), N,N,-dimethylthiourea (DMTU), and N,N,N,,N,-tetramethylthiourea (TMTU) were investigated in methanol as a solvent. The substitution reactions of the chloride displacement from the metal complexes by the nucleophiles were investigated as a function of nucleophile concentration and temperature under pseudo-first-order conditions using the stopped-flow technique. The reactions followed the simple rate law kobs = k2[Nu]. The results indicate that the introduction of substituents in the ortho position of the phenyl group on the ancillary ring of the terpy unit does influence the extent of ,-backbonding in the terpy ring. This controls the electrophilicity of the platinum center, which in turn controls the lability of the chloro-leaving group. The strength of the electron-donating or -withdrawing ability of the substituents correlates with the reactivity of the complexes. Electron-donating substituents decrease the rate of substitution, whereas electron-withdrawing substituents increase the rate of substitution. This was supported by DFT calculations at the B3LYP/LACVP+** level of theory, which showed that most of the electron density of the HOMO is concentrated on the phenyl ligand rather than on the metal center in the case of the strongest electron-withdrawing substituent in CF3PhPtCl. The opposite was found to be true with the strongest electron-donating substituent in CH3PhPtCl. Thiourea was found to be the best nucleophile with N,N,N,,N,-tetramethylthiourea being the weakest due to steric effects. The temperature dependence studies support an associative mode of activation. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 808,818, 2008 [source]


    The role of the Frontier orbitals in acid,base chemistry of organic amines probed by ab initio and chemometric techniques

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 11 2010
    Felipe A. La Porta
    Abstract The Frontier effective-for-reaction molecular orbital (FERMO) concept emerges as a powerful and innovative implement to investigate the role of molecular orbitals (MOs) applied in the description of breakage and formation of chemical bonds. In this work, theoretical calculations were carried out for conjugated acids of 18 amines and their acid,base behavior was analyzed using MO energies. We observed that highest occupied MO (HOMO) energies are inadequate to describe the acid,base behavior of these compounds. By using the FERMO concept, the reactions that are driven by HOMO, and those that are not, can be better explained, independent of the calculation method used, as independent of the calculation method used, both HF and Kohn,Sham methodologies lead to the same FERMO. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


    Theoretical study on the influence of ancillary ligand on the spectroscopic properties and electronic structures of phosphorescent Pt(II) complexes

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2010
    Min Zhang
    Abstract The geometries, energies, and electronic properties of a series of phosphorescent Pt(II) complexes including FPt, CFPt, COFPt, and NFPt have been characterized within density functional theory DFT calculations which can reproduce and rationalize experimental results. The properties of excited-states of the Pt(II) complexes were characterized by configuration interaction with singles (CIS) method. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. In addition, we also have performed a triplet UB3LYP optimization for complex FPt and compared it with CIS method in the emission properties. The datum (562.52 nm) of emission wavelength for complex FPt, which were computed based on the triplet UB3LYP optimization excited-state geometry, is not agreement with the experiment value (500 nm). The absorption and phosphorescence wavelengths were computed based on the optimized ground- and excited-state geometries, respectively, by the time-dependent density functional theory (TD-DFT) methods. The results revealed that the nature of the substituent at the phenylpyridine ligand can influence the distributions of HOMO and LUMO and their energies. Moreover, the auxiliary ligand pyridyltetrazole can make the molecular structure present a solid geometry. In addition, the charge transport quality has been estimated approximately by the predicted reorganization energy (,). Our result also indicates that the substitute groups and different auxiliary ligand not only change the nature of transition but also affect the rate and balance of charge transfer. By summarizing the results, we can conclude that the NFPt is good OLED materials with a solid geometry and a balanced charge transfer rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


    Calculation of the electronic structure of AmO2 and Pr6O11 for XANES analysis with redox property

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 12 2009
    Chikashi Suzuki
    Abstract We calculated X-ray absorption near-edge structure (XANES) of Am LIII of AmO2 and Pr LIII of Pr6O11 using the relativistic discrete-variational (DV)-X, method based on the Dirac,Slater method, and compared it with the experimental spectra. These spectra were calculated on a model of AmO2 ([AmO8]12,) and Pr6O11 ([PrO8]12,). In spite of using small cluster models, the calculated spectra were in good agreement with the experiment ones. Besides, we calculated the electronic structure of AmO2 and Pr6O11 to analyze the peak structures of XANES. From this calculation, it was found that O s, p, and f components had influence on the specific peak structures but that O d component had influence on various peak structures for AmO2 and Pr6O11. From this result, it was suggested that the change of the electronic structure of actinide 6d and O d or f was important for actinide LIII XANES corresponding to oxygen to metal ratio in the oxide nuclear fuel. On the basis of these results, we calculated the fine structures of densities of states and the transition energy from the HOMO to the white line of AmO2, UO2, and Pr6O11 and investigated redox properties of Am and U in the oxide nuclear fuel with the evaluation of validity of Pr as simulant materials of Am. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


    Theoretical study on the spectroscopic properties and electronic structures of heteroleptic phosphorescent Ir(III) complexes

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 6 2009
    Min Zhang
    Abstract The geometries, spectroscopic and electronic structures properties of a series of heteroleptic phosphorescent Ir(III) complexes including N981, N982, N983, N984 have been characterized by density functional theory calculations. The excited-state properties of the Ir(III) complexes have been characterized by CIS method. The ground- and excited-state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. By using the time-dependent density functional theory method, the absorption and phosphorescence spectra were calculated based on the optimized ground- and excited-state geometries, respectively. The results show that the absorption and emission data agree well with the corresponding experimental results. The calculated results also revealed that the nature of the substituent at the 4-position of the pyridyl moiety can influence the distributions of HOMO and LUMO and their energies. In addition, the charge transport quality has been estimated approximately by the calculated reorganization energy (,). Our result also indicates that the positions of the substitute groups not only change the transition characters but also affect the charge transfer rate and balance, and complex N982 is a very good charge transfer material for green OLEDs. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source]


    Optical spectra and covalent chemistry of fulleropyrrolidines

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 14 2007
    B. S. Razbirin
    Abstract Low-temperature vibronic spectra of two fulleropyrrolidines (1-methyl-3,4-FP and 1-methyl-2(4-pyridine)-3,4-FP) embedded in crystalline toluene matrix have been studied. Two-component composition of the spectra has been established and charge-transfer-excitation origin of the structureless component has been suggested. Fine-structured Shpol'skii spectra were observed for 1-methyl-3,4-FP, which made possible to perform the vibrational analysis of its vibronic spectra. General similarities of the absorption spectra of fulleropyrrolidines and C60 molecules along with significant difference in their details have been discussed. A detailed interpretation of the C60 spectra serves as a basis for analyzing the spectra of the derivatives. Quantum-chemical study is based on the effectively-unpaired-electron concept for the fullerene molecule. Computations have been performed for the singlet states of the molecules in unrestricted Hartree,Fock approximation implemented in AM1 semiempirical quantum chemical codes of the CLUSTER-Z1 software. The population of the HOMO and LUMO of the molecules under study alongside with the lowering of the molecules symmetry have been proposed to explain the spectral features observed. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 [source]


    DFT study of the electronic properties of DNA,DNA and PNA,DNA double strands

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 15 2006
    Takayuki Natsume
    Abstract The electronic properties of DNA,DNA and PNA,DNA double strands having 3,6 base pairs (bp) were investigated by density functional theory (DFT) calculations. The binding energies and the highest occupied molecular orbital,lowest unoccupied molecular orbital (HOMO,LUMO) energy gaps for the PNA,DNA hybrids in the vapor phase are found to be greater than those for the DNA,DNA hybrids, regardless of the number of base pairs involved. The study supports the experimental finding that PNA displays high affinity toward a complementary DNA and that PNA,DNA strands are much more thermodynamically stable than their DNA,DNA counterparts. The results suggest much higher sensitivity in DNA sequencing with the arrays of PNA than with those of DNA. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


    Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 3 2005
    K. Anandan
    Abstract Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller,Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (, and ,) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree,Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the intermolecular hydrogen bonds of the hydrated conformers. Self-consistent reaction field (SCRF) theory has been employed to optimize all the conformers in the aqueous phase (, = 78.39) at the B3LYP/6-311G(2d,2p) level of theory, and the solvent effect has been studied. Vibrational frequency analysis has been performed for all the optimized structures at MP2/6-311G(2d,2p) level of theory, and the stationary points corresponding to local minima without imaginary frequencies have been obtained for all the molecular structures. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


    Using 1,3-butadiene and 1,3,5-hexatriene to model the cis-trans isomerization of retinal, the chromophore in the visual pigment rhodopsin

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4-5 2002
    Fredrik Blomgren
    Abstract The short polyenes 1,3-butadiene and 1,3,5-hexatriene are used to model the cis-trans isomerization of the protonated Schiff base of retinal (PSBR) in rhodopsin (Rh). We employed the complete active space self-consistent field (CASSCF) method for calculation of the potential energy surfaces (PESs) in C2 symmetry. In the calculations, the central bond was twisted from 0 to 180° in the first singly excited singlet state (Sse), i.e., the state dominated by a configuration with one electron excited from HOMO to LUMO. It was found that the PES of 1,3-butadiene has a maximum whereas the PES of 1,3,5-hexatriene has a minimum for a twist angle of 90°. This is explained by a shift in border of single and double bonds in the Sse state. The first step in the cis-trans isomerization of PSBR, which is the formation of the C6C7 (see Scheme 1 for numbering) twisted PSBR in the first excited singlet state (S1), inside the protein binding pocket of the visual pigment Rh is modeled using crystal coordinates and the calculations performed on 1,3-butadiene and 1,3,5-hexatriene. More specifically, a plausible approximate structure is calculated in a geometric way for the C6C7 90° twisted PSBR, which fits into the protein binding pocket in the best possible way. It has been shown earlier that PSBR has an energy minimum for this angle in S1. The CASSCF method was used to investigate the wave function of the calculated structure of PSBR. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002 [source]


    Temperature effects on the UV,Vis electronic spectrum of trans-stilbene

    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 4-5 2001
    S. P. Kwasniewski
    Abstract The ultraviolet (UV),Visible absorption spectrum of trans-stilbene (tS) is computed at different temperatures by coupling molecular dynamics (MD) simulations with the classical MM3 force field to ZINDO/S-CIS calculations of vertical excitation energies and transition dipole moments. The selection of a large number of structures along the MD trajectories enables a consistent treatment of temperature effects in the vacuum, whereas the ZINDO/S-CIS calculations permit a reliable treatment of electron correlation and relaxation, taking account of multistate interactions in the final state. Thermal motions are found to alter very differently the width and shape of bands. Structural alterations such as the stretching and the torsion of the vinyl single and double bonds very strongly influence the appearance of the first valence state, pertaining to the highest occupied and lowest unoccupied molecular orbital (HOMO,LUMO) transition. At temperatures less than 400 K, these are found to yield a merely Gaussian and very pronounced thermal broadening of the related band (A), up to nearly 30 nm, together with a minor blue shift of its maximum ,max. In contrast, a red shift by several nanometers occurs due to thermal motions for the remaining three valence bands. As can be expected, the broadening intensifies at higher temperatures, and for the A-band, becomes markedly asymmetric when T exceeds 400 K. The combination of MD(MM3) and ZINDO/S-CIS computations enables also consistent calculations of hot bands, which are forbidden by symmetry at 0 K. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001 [source]


    Intramolecular electronic communication in a dimethylaminoazobenzene,fullerene C60 dyad: An experimental and TD-DFT study

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2010
    K. Senthil Kumar
    Abstract An electronically push,pull type dimethylaminoazobenzene,fullerene C60 hybrid was designed and synthesized by tailoring N,N -dimethylaniline as an electron donating auxochrome that intensified charge density on the ,-azonitrogen, and on N -methylfulleropyrrolidine (NMFP) as an electron acceptor at the 4 and 4, positions of the azobenzene moiety, respectively. The absorption and charge transfer behavior of the hybrid donor-bridge-acceptor dyad were studied experimentally and by performing TD-DFT calculations. The TD-DFT predicted charge transfer interactions of the dyad ranging from 747 to 601 nm were experimentally observed in the UV-vis spectra at 721 nm in toluene and dichloromethane. A 149 mV anodic shift in the first reduction potential of the NN group of the dyad in comparison with the model aminoazobenzene derivative further supported the phenomenon. Analysis of the charge transfer band through the orbital picture revealed charge displacement from the n(NN) (nonbonding) and , (NN) type orbitals centered on the donor part to the purely fullerene centered LUMOs and LUMO+n orbitals, delocalized over the entire molecule. The imposed electronic perturbations on the aminoazobenzene moiety upon coupling it with C60 were analyzed by comparing the TD-DFT predicted and experimentally observed electronic transition energies of the dyad with the model compounds, NMFP and (E)-N,N -dimethyl-4-(p-tolyldiazenyl)aniline (AZNME). The n(NN) , ,*(NN) and ,(NN) , ,*(NN) transitions of the dyad were bathochromically shifted with a significant charge transfer character. The shifting of ,(NN) , ,*(NN) excitation energy closer to the n , ,*(NN) in comparison with the model aminoazobenzene emphasized the predominant existence of charge separated quinonoid-like ground state electronic structure. Increasing solvent polarity introduced hyperchromic effect in the ,(NN) , ,*(NN) electronic transition at the expense of transitions involved with benzenic states, and the extent of intensity borrowing was quantified adopting the Gaussian deconvolution method. On a comparative scale, the predicted excitation energies were in reasonable agreement with the observed values, demonstrating the efficiency of TD-DFT in predicting the localized and the charge transfer nature of transitions involved with large electronically asymmetric molecules with HOMO and LUMO centered on different parts of the molecular framework. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


    Conceptual DFT properties-based 3D QSAR: Analysis of inhibitors of the nicotine metabolizing CYP2A6 enzyme

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2009
    Sofie Van Damme
    Abstract Structure-activity relationships of 46 P450 2A6 inhibitors were analyzed using the 3D-QSAR methodology. The analysis was carried out to confront the use of traditional steric and electrostatic fields with that of a number of fields reflecting conceptual DFT properties: electron density, HOMO, LUMO, and Fukui f, function as 3D fields. The most predictive models were obtained by combining the information of the electron density with the Fukui f, function (r2 = 0.82, q2 = 0.72), yielding a statistically significant and predictive model. The generated model was able to predict the inhibition potencies of an external test set of five chemicals. The result of the analysis indicates that conceptual DFT-based molecular fields can be useful as 3D QSAR molecular interaction fields. © 2008 Wiley Periodicals, Inc. J Comput Chem 2009 [source]


    Structural, electronic, and optical properties of 9-heterofluorenes: A quantum chemical study

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2007
    Run-Feng Chen
    Abstract Density-functional theory studies were applied to investigate the structural, electronic, and optical properties of 9-heterofluorenes achieved by substituting the carbon at 9 position of fluorene with silicon, germanium, nitrogen, phosphor, oxygen, sulfur, selenium, or boron. These heterofluorenes and their oligomers up to pentamers are highly aromatic and electrooptically active. The alkyl and aryl substituents of the heteroatom have limited influence, but the oxidation of the atom has significant influence on their molecular structures and properties. The highest occupied molecular orbital (HOMO)-lowest occupied molecular orbital (LUMO) interaction theory was successfully applied to analyze the energy levels and the frontier wave functions of these heterofluorenes. Most heterofluorenes belong to type B of interaction with low-lying LUMO and have the second kind of wave function. Carbazole and selenafluorene have type C of interaction with high-lying HOMO and the third kind of wave function. Types C and D of heterofluorenes, such as carbazole, oxygafluorene, sulfurafluorene, and selenafluorene also have high triplet state energies. The extrapolated HOMO and LUMO for polyheterofluorenes indicate that polyselenonafluorene has the lowest LUMO; polycarbazole has the highest HOMO; polyselenafluorene has the highest bandgap (Eg); and polyborafluorene has the lowest Eg. Heterofluorenes and their oligomers and polymers are of great experimental interests, especially those having extraordinary properties revealed in this study. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]