Home About us Contact | |||
Homing Behaviour (homing + behaviour)
Selected AbstractsReproduction biology of pikeperch (Sander lucioperca (L.)) , a reviewECOLOGY OF FRESHWATER FISH, Issue 2 2003J. Lappalainen Abstract,,, The present review focuses on the reproduction biology of pikeperch (Sander lucioperca (L.)). Aspects like maturity, fecundity, spawning migrations, spawning habitats, onset of spawning, and development time of eggs were reviewed. The onset of maturity is reached at younger age in southern than northern populations due to higher growth rate in the south. Males mature at smaller size and are on average younger than females. Absolute fecundity is closely related to the length and weight, but no clear relationship could be found between relative fecundity and length. Statistically significant relationships were found between the onset of spawning and latitude, and between the duration of the development time of eggs and stable water temperature. Near the southern limits of distribution, the onset of spawning is in February while near the northern limits it is in June. The interannual variability in fecundity and in the onset of maturity and further the factors affecting them have not been studied much. Furthermore, it is not known whether these variations could affect the population dynamics of pikeperch. Little is also known about the actual spawning behaviour of pikeperch in natural habitats. This is probably due to the typical spawning habitats located at 1,3 m depth in waters with high turbidity and low visibility. Even though the homing behaviour to the same spawning areas is well developed in adults, it is not known whether the adults were actually born in the same area. [source] Dispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregationMOLECULAR ECOLOGY, Issue 3 2008XIMENA VELEZ-ZUAZO Abstract We investigated the dispersal, recruitment and migratory behaviour of the hawksbill sea turtle (Eretmochelys imbricata), among different life-history stages and demographic segments of the large hawksbill turtle aggregation at Mona Island, Puerto Rico. There were significant differences in both mitochondrial DNA (mtDNA) haplotype diversity and haplotype frequencies among the adult males, females and juveniles examined, but little evidence for temporal heterogeneity within these same groups sampled across years. Consistent with previous studies and the hypothesis of strong natal homing, there were striking mtDNA haplotype differences between nesting females on Mona Island and nesting females in other major Caribbean rookeries. Breeding males also showed strong, albeit weaker, genetic evidence of natal homing. Overall, Bayesian mixed-stock analysis suggests that Mona Island was the natal rookery for 79% (65,94%) of males in the aggregation. In contrast, the Mona Island rookery accounted for only a small subset of the new juvenile recruits to the foraging grounds or in the population of older juvenile hawksbills turtles on Mona. Instead, both new recruits and the older juvenile hawksbill turtles on Mona more likely recruited from other Caribbean rookeries, suggesting that a mechanism besides natal homing must be influencing recruitment to feeding habitats. The difference in the apparent degree of natal homing behaviour among the different life-history stages of hawksbill turtles at Mona Island underscores the complexity of the species' life-history dynamics and highlights the need for both local and regional conservation efforts. [source] Natal homing in juvenile loggerhead turtles (Caretta caretta)MOLECULAR ECOLOGY, Issue 12 2004BRIAN W. BOWEN Abstract Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (,ST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats. [source] Activity patterns of abalone under experimental conditionsAQUACULTURE RESEARCH, Issue 3 2001K Nakamura Abstract Locomotion behaviour of the abalone, Nordotis discus (Reeve), N. gigantea (Gmelin) and Sulculus aquatilis (Reeve), was observed for 5- to 10-day periods during the early summer and autumn from 1997 to 1999. Before sunset, the animals were individually put beneath each shelter situated on the flat concrete floor of indoor and outdoor tanks. For tracing of the locomotion path, a luminous rod was fixed on the animal's shell. Except for non-appearance, the locomotion behaviour showed leaving or homing; these ratios against each total observation according to each species were 70.0% and 16.7% in N. discus, 47.1 and 23.5% in N. gigantea and 57.6 and 24.2% in S. aquatilis respectively. Irrespective of species, recurrences to the home were frequently recognized during the locomotion. For the homing behaviour, its critical distance was approximately 1 m from the home. Moonlight did not completely restrain the abalone appearance from the home, though the appearance frequency during the period around the full moon was lowered and in some cases the time of initial appearance was retarded. [source] Non-direct homing behaviours by adult Chinook salmon in a large, multi-stock river systemJOURNAL OF FISH BIOLOGY, Issue 1 2008M. L. Keefer Two non-direct homing behaviours, overshoot of natal tributaries and temporary non-natal tributary use, were evaluated for 5150 radio-tagged spring,summer Chinook salmon Oncorhynchus tshawytscha from 40 populations in the large Columbia River system. Over 7 years, 2,44% (mean = 15%) of individuals within each group temporarily entered presumed non-natal tributaries. In addition, many Chinook salmon from lower river tributaries initially travelled 3 to >250 km upstream in the main-stem river beyond confluences with presumed natal tributaries before returning to the natal sites (,overshoot'). Both overshoot and temporary tributary use behaviours declined exponentially with increasing distance from the natal tributary. Non-direct homing also increased later in the season as water temperatures rose and was associated with hatchery origin in some cases. The behaviours may reflect a mix of active searching for olfactory cues from natal sites, behavioural thermoregulation and orientation challenges in a large-river migration corridor transformed by dams and reservoirs. While anadromous salmonid homing is generally accurate and precise, these results indicate that route finding can be non-direct, potentially increasing energetic costs and harvest risks during migration. [source] |