Home About us Contact | |||
Holocene Transition (holocene + transition)
Selected AbstractsPaleoecology and geochronology of glacial Lake Hind during the Pleistocene,Holocene transition: A context for Folsom surface finds on the Canadian PrairiesGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 6 2003Matthew Boyd Stratigraphic and paleoecologic (palynomorph, macrobotanical) data obtained from a cutbank of the Souris River in southwestern Manitoba establish some fundamental parameters of Folsom land-use in association with a proglacial lake on the Canadian Prairies. By dating the regression of glacial Lake Hind, we observed that recorded Folsom sites are restricted to areas of the Hind basin drained shortly before 10,400 yr B.P. This pattern may therefore record the interception of seasonal resources on recently-drained proglacial lake surfaces. Based on paleovegetation reconstructions, we note that these surfaces were rapidly colonized by emergent and aquatic vegetation following regression, generating a viable resource base for Folsom hunter-gatherers. However, low plant productivity and diversity may have greatly limited the extent to which this locale was exploited, in contrast to nonperiglacial regions on the Plains. We also suggest that wetland plant succession during the Pleistocene-Holocene transition was due, at least locally, to climate-forced fluctuations in groundwater levels. © 2003 Wiley Periodicals, Inc. [source] Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial,Holocene transition at Lake Lautrey (Jura Mountains, eastern France),JOURNAL OF QUATERNARY SCIENCE, Issue 6 2010Adeline A. J. Wall Abstract We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial,Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high-resolution multi-proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25,µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm,2 a,1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling,Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short-lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high-resolution studies based on multi-proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd. [source] Climatic oscillations in central Italy during the Last Glacial,Holocene transition: the record from Lake Accesa,JOURNAL OF QUATERNARY SCIENCE, Issue 4 2006Michel Magny Abstract This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial,early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age,depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas,Bølling warming event was dated to ca. 14,560,cal.,yr,BP and the Younger Dryas event to ca. 12,700,11,650,cal.,yr,BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14,300,14,200, 13,900,13,700, 13,400,13,100 and 11,350,11,150,cal.,yr,BP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2,ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd. [source] Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobeBOREAS, Issue 4 2004ANKER WEIDICK The evolution of the southern Greenland Ice Sheet is interpreted from a synthesis of geological data and palaeoclimatic information provided by the ice-sheet cores. At the Last Glacial Maximum the ice margin would have been at the shelf break and the ice sheet was fringed by shelf ice. Virtually all of the present ice-free land was glaciated. The initial ice retreat was controlled by eustatic sea level rise and was mainly by calving. When temperatures increased, melt ablation led to further ice-margin retreat and areas at the outer coast and mountain tops were deglaciated. Retreat was interrupted by a readvance during the Neria stade that may correlate with the Younger Dryas cooling. The abrupt temperature rise at the Younger Dryas,Holocene transition led to a fast retreat of the ice margin, and after ,9 ka BP the ice sheet was smaller than at present. Expansion of the ice cover began in the Late Holocene, with a maximum generally during the Little Ice Age. The greatest changes in ice cover occurred in lowland areas, i.e. in the region of the Qassimiut lobe. The date of the historical maximum advance shows considerable spatial variability and varies between AD 1600 and the present. Local anomalous readvances are seen at possibly 7,8 ka and at c. 2 ka BP. A marked relative sea level rise is seen in the Late Holocene; this is believed to reflect a direct glacio-isostatic response to increasing ice load. [source] CHRONOLOGY OF THE LAST GLACIATION IN CENTRAL STRAIT OF MAGELLAN AND BAHÍA INÚTIL, SOUTHERNMOST SOUTH AMERICAGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2005R.D. McCULLOCH ABSTRACT. Glacier fluctuations in the Strait of Magellan tell of the climatic changes that affected southern latitudes at c. 53,55°S during the Last Glacial Maximum (LGM) and Late-glacial/Holocene transition. Here we present a revised chronology based on cosmogenic isotope analysis, 14C assays, amino acid racemisation and tephrochronology. We unpick the effect of bedrock-derived lignite which has affected many 14C dates in the past and synthesise new and revised dates that constrain five glacier advances (A to E). Advance A is prior to the LGM. LGM is represented by Advance B that reached and largely formed the arcuate peninsula Juan Mazia. Carbon-14and 10Be dating show it occurred after 31 250 cal yrs BP and culminated at 25 200,23 100 cal yrs BP and was then followed by the slightly less extensive advance C sometime before 22 400,20 300 cal yrs BP. This pattern of an early maximum is found elsewhere in South America and more widely. Stage D, considerably less extensive, culminated sometime before 17 700,17 600 cal yrs BP and was followed by rapid and widespread glacier retreat. Advance E, which dammed a lake, spanned 15 500,11770 cal yrs BP. This latter advance overlaps the Bølling-Allerød interstadials and the glacier retreat occurs during the peak of the Younger Dryas stadial in the northern hemisphere. However, the stage E advance coincides with the Antarctic Cold Reversal (c. 14800,12700 cal yrs BP) and may indicate that some millennial-scale climatic fluctuations in the Late-glacial period are out of phase between the northern and southern hemispheres. [source] Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical timesMOLECULAR ECOLOGY, Issue 8 2008SEBASTIEN CALVIGNAC Abstract The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35 000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition. [source] |