Home About us Contact | |||
American Mammals (american + mammal)
Kinds of American Mammals Selected AbstractsBeta diversity and latitude in North American mammals: testing the hypothesis of covariationECOGRAPHY, Issue 5 2004Pilar Rodríguez Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species. [source] The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North AmericaGLOBAL ECOLOGY, Issue 1 2009Hong Qian ABSTRACT Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal-area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template. [source] Patch occupancy of North American mammals: is patchiness in the eye of the beholder?JOURNAL OF BIOGEOGRAPHY, Issue 8 2003Robert K. Swihart Abstract Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non-random distributions in which local assemblages of species-poor patches are nested subsets of assemblages occupying more species-rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ,ecological' hypotheses and the ,physical landscape' hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non-volant mammals and twenty networks consisting of four to seventy-five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species-specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time-scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems. [source] Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradientsJOURNAL OF BIOGEOGRAPHY, Issue 6 2000Catherine Badgley Abstract Aim, To evaluate the relationship of climate and physiography to species density and ecological diversity of North American mammals. Location, North America, including Mexico and Central America. Methods, Species density, size structure and trophic structure of mammalian faunas and nine environmental variables were documented for quadrats covering the entire continent. Spatial autocorrelation of species density and the environmental variables illustrated differences in their spatial structure at the continental scale. We used principal component analysis to reduce the dimensionality of the climatic variables, linear multiple regression to determine which environmental variables best predict species density for the continent and several regions of the continent, and canonical ordination to evaluate how well the environmental variables predict ecological structure of mammalian faunas over North America. Results, In the best regression model, five environmental variables, representing seasonal extremes of temperature, annual energy and moisture, and elevation, predicted 88% of the variation in species density for the whole continent. Among different regions of North America, the environmental variables that predicted species density vary. Changes in the size and trophic structure of mammalian faunas accompany changes in species density. Redundancy analysis demonstrated that environmental variables representing winter temperature, frostfree period, potential and actual evapotranspiration, and elevation account for 77% of the variation in ecological structure. Main conclusions, The latitudinal gradient in mammalian species density is strong, but most of it is explained by variation in the environmental variables. Each ecological category peaks in species richness under particular environmental conditions. The changes of greatest magnitude involve the smallest size categories (< 10 g, 11,100 g), aerial insectivores and frugivores. Species in these categories, mostly bats, increase along a gradient of decreasing winter temperature and increasing annual moisture and frostfree period, trends correlated with latitude. At the opposite end of this gradient, species in the largest size category (101,1000 kg) increase in frequency. Species in size categories 3 (101,1000 g), 5 (11,100 kg) and 6 (101,1000 kg), herbivores, and granivores increase along a longitudinal gradient of increasing annual potential evapotranspiration and elevation. Much of the spatial pattern is consistent with ecological sorting of species ranges along environmental gradients, but differential rates of speciation and extinction also may have shaped the ecological diversity of extant North American mammals. [source] |