Home About us Contact | |||
Historical Range (historical + range)
Selected AbstractsThe Ecological Future of the North American Bison: Conceiving Long-Term, Large-Scale Conservation of WildlifeCONSERVATION BIOLOGY, Issue 2 2008ERIC W. SANDERSON Bison bison; conservación de especies; Declaración de Vermejo; metas de conservación; representación ecológica Abstract:,Many wide-ranging mammal species have experienced significant declines over the last 200 years; restoring these species will require long-term, large-scale recovery efforts. We highlight 5 attributes of a recent range-wide vision-setting exercise for ecological recovery of the North American bison (Bison bison) that are broadly applicable to other species and restoration targets. The result of the exercise, the "Vermejo Statement" on bison restoration, is explicitly (1) large scale, (2) long term, (3) inclusive, (4) fulfilling of different values, and (5) ambitious. It reads, in part, "Over the next century, the ecological recovery of the North American bison will occur when multiple large herds move freely across extensive landscapes within all major habitats of their historic range, interacting in ecologically significant ways with the fullest possible set of other native species, and inspiring, sustaining and connecting human cultures." We refined the vision into a scorecard that illustrates how individual bison herds can contribute to the vision. We also developed a set of maps and analyzed the current and potential future distributions of bison on the basis of expert assessment. Although more than 500,000 bison exist in North America today, we estimated they occupy <1% of their historical range and in no place express the full range of ecological and social values of previous times. By formulating an inclusive, affirmative, and specific vision through consultation with a wide range of stakeholders, we hope to provide a foundation for conservation of bison, and other wide-ranging species, over the next 100 years. Resumen:,Muchas especies de mamíferos de distribución amplia han experimentado declinaciones significativas durante los últimos 200 años; la restauración de estas especies requerirá esfuerzos de recuperación a largo plazo y a gran escala. Resaltamos 5 atributos de un reciente ejercicio de gran visión para la recuperación ecológica del bisonte de Norte América (Bison bison) que son aplicables en lo general a otras especies y objetivos de restauración. El resultado del ejercicio, la "Declaración de Vermejo", explícitamente es (1) de gran escala, (2) de largo plazo, (3) incluyente, (4) satisfactor de valores diferentes y (5) ambicioso. En parte, establece que "En el próximo siglo, la recuperación ecológica del Bisonte de Norte América ocurrirá cuando múltiples manadas se desplacen libremente en los extensos paisajes de todos los hábitats importantes en su rango de distribución histórica, interactúen de manera significativa ecológicamente con el conjunto más completo de otras especies nativas e inspiren, sostengan y conecten culturas humanas." Refinamos esta visión en una tarjeta de puntuación que ilustra cómo las manadas de bisonte individuales pueden contribuir a la visión. También desarrollamos un conjunto de mapas y analizamos las distribuciones actuales y potencialmente futuras del bisonte con base en la evaluación de expertos. Aunque actualmente existen más de 500,000 bisontes en Norte América, estimamos que ocupan <1% de su distribución histórica y no expresan el rango completo de valores ecológicos y culturales de otros tiempos. Mediante la formulación de una visión incluyente, afirmativa y específica basada en la consulta a una amplia gama de interesados, esperamos proporcionar un fundamento para la conservación del bisonte, y otras especies de distribución amplia, para los próximos 100 años. [source] Range-wide patterns of greater sage-grouse persistenceDIVERSITY AND DISTRIBUTIONS, Issue 6 2008Cameron L. Aldridge ABSTRACT Aim, Greater sage-grouse (Centrocercus urophasianus), a shrub-steppe obligate species of western North America, currently occupies only half its historical range. Here we examine how broad-scale, long-term trends in landscape condition have affected range contraction. Location, Sagebrush biome of the western USA. Methods, Logistic regression was used to assess persistence and extirpation of greater sage-grouse range based on landscape conditions measured by human population (density and population change), vegetation (percentage of sagebrush habitat), roads (density of and distance to roads), agriculture (cropland, farmland and cattle density), climate (number of severe and extreme droughts) and range periphery. Model predictions were used to identify areas where future extirpations can be expected, while also explaining possible causes of past extirpations. Results, Greater sage-grouse persistence and extirpation were significantly related to sagebrush habitat, cultivated cropland, human population density in 1950, prevalence of severe droughts and historical range periphery. Extirpation of sage-grouse was most likely in areas having at least four persons per square kilometre in 1950, 25% cultivated cropland in 2002 or the presence of three or more severe droughts per decade. In contrast, persistence of sage-grouse was expected when at least 30 km from historical range edge and in habitats containing at least 25% sagebrush cover within 30 km. Extirpation was most often explained (35%) by the combined effects of peripherality (within 30 km of range edge) and lack of sagebrush cover (less than 25% within 30 km). Based on patterns of prior extirpation and model predictions, we predict that 29% of remaining range may be at risk. Main Conclusions, Spatial patterns in greater sage-grouse range contraction can be explained by widely available landscape variables that describe patterns of remaining sagebrush habitat and loss due to cultivation, climatic trends, human population growth and peripherality of populations. However, future range loss may relate less to historical mechanisms and more to recent changes in land use and habitat condition, including energy developments and invasions by non-native species such as cheatgrass (Bromus tectorum) and West Nile virus. In conjunction with local measures of population performance, landscape-scale predictions of future range loss may be useful for prioritizing management and protection. Our results suggest that initial conservation efforts should focus on maintaining large expanses of sagebrush habitat, enhancing quality of existing habitats, and increasing habitat connectivity. [source] Ecological dynamics of extinct species in empty habitat networks.OIKOS, Issue 3 2003This paper explores the relative effects of host plant dynamics and butterfly-related parameters on butterfly persistence. It considers an empty habitat network where a rare butterfly (Cupido minimus) became extinct in 1939 in part of its historical range in north Wales, UK. Surviving populations of the butterfly in southern Britain were visited to assess use of its host plant (Anthyllis vulneraria) in order to calibrate habitat suitability and carrying capacity in the empty network in north Wales. These data were used to deduce that only a portion (,19%) of the host plant network from north Wales was likely to be highly suitable for oviposition. Nonetheless, roughly 65,460 eggs (3273 adult equivalents) could be expected to be laid in north Wales, were the empty network to be populated at the same levels as observed on comparable plants in surviving populations elsewhere. Simulated metapopulations of C. minimus in the empty network revealed that time to extinction and patch occupancy were significantly influenced by carrying capacity, butterfly mean dispersal distance and environmental stochasticity, although for most reasonable parameter values, the model system persisted. Simulation outputs differed greatly when host plant dynamics was incorporated into the modelled butterfly dynamics. Cupido minimus usually went extinct when host plant were at low densities. In these simulations host plant dynamics appeared to be the most important determinant of the butterfly's regional extirpation. Modelling the outcome of a reintroduction programme to C. minimus variation at high quality locations, revealed that 65% of systems survived at least 100 years. Given the current amount of resources of the north Wales landscape, the persistence of C. minimus under a realistic reintroduction programme has a good chance of being successful, if carried out in conjunction with a host plant management programme. [source] Management history and climate as key factors driving natterjack toad population trends in BritainANIMAL CONSERVATION, Issue 5 2010A. L. McGrath Abstract Along with other amphibian populations in Europe and elsewhere, natterjack toad Bufo calamita populations in Britain have declined since at least 1960. Conservation management since the 1970s has aimed to halt the decline and maintain viable populations at key sites throughout the species' recent historical range. Here, we assess population trends from 1985 to 2006 at 20 British B. calamita sites and evaluate the role of active management in maintaining good conservation status. We investigated the effects of 25 climatic, site-characteristic and conservation management variables on population trends using general linear models. In single-variable analyses, rainfall variables showed negative relationships with population trends. Among the site characteristics, being located at the very edge of the species' range (northern Irish Sea coast) and occurrence of common toad (B. bufo) were negatively related to B. calamita population trends. Management history (populations established via translocation as opposed to native populations) had a significant positive effect; as had sites that received greater translocation releases, undergone Species Recovery Programme management, and where common toad was absent. In multiple-variable analyses, the combined effects of management history and average pre-breeding season rainfall accounted for inter-site variation in population trends. The rainfall effects in single- and multiple-variable analyses were strongly influenced by three sites with very high rainfall whilst no clear effect was apparent for the remaining sites. This study highlights the role of climatic factors in population decline, and the importance of conservation management in stabilizing population trends. Climate change over the next 50,100 years is predicted to have limited impacts on most B. calamita populations in Britain, but strongly positive impacts on the most threatened populations located at the very edge of species' range that will benefit from reduced precipitation. A need for active conservation management will remain for the foreseeable future. [source] |