Historical Dynamics (historical + dynamics)

Distribution by Scientific Domains


Selected Abstracts


New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests

JOURNAL OF BIOGEOGRAPHY, Issue 2 2009
Jeremy VanDerWal
Abstract Aim, We created spatially explicit models of palaeovegetation stability for the rain forests of the Australia Wet Tropics. We accounted for the climatic fluctuations of the late Quaternary, improving upon previous palaeovegetation modelling for the region in terms of data, approach and coverage of predictions. Location, Australian Wet Tropics. Methods, We generated climate-based distribution models for broad rain forest vegetation types using contemporary and reconstructed ,pre-clearing' vegetation data. Models were projected onto previously published palaeoclimate scenarios dating to c. 18 kyr bp. Vegetation stability was estimated as the average likelihood that a location was suitable for rain forest through all climate scenarios. Uncertainty associated with model projections onto novel environmental conditions was also tracked. Results, Upland rain forest was found to be the most stable of the wet forest vegetation types examined. We provide evidence that the lowland rain forests were largely extirpated from the region during the last glacial maximum, with only small, marginally suitable fragments persisting in two areas. Models generated using contemporary vegetation data underestimated the area of environmental space suitable for rain forest in historical time periods. Model uncertainty resulting from projection onto novel environmental conditions was low, but generally increased with the number of years before present being modelled. Main conclusions, Climate fluctuations of the late Quaternary probably resulted in dramatic change in the extent of rain forest in the region. Pockets of high-stability upland rain forest were identified, but extreme bottlenecks of area were predicted for lowland rain forest. These factors are expected to have had a dramatic impact on the historical dynamics of population connectivity and patterns of extinction and recolonization of dependent fauna. Finally, we found that models trained on contemporary vegetation data can be problematic for reconstructing vegetation patterns under novel environmental conditions. Climatic tolerances and the historical extent of vegetation may be underestimated when artificial vegetation boundaries imposed by land clearing are not taken into account. [source]


Anthropogenic disturbance and the formation of oak savanna in central Kentucky, USA

JOURNAL OF BIOGEOGRAPHY, Issue 5 2008
Ryan W. McEwan
Abstract Aim, To deepen understanding of the factors that influenced the formation of oak savanna in central Kentucky, USA. Particular attention was focused on the link between historical disturbance and the formation of savanna ecosystem structure. Location, Central Kentucky, USA. Methods, We used dendrochronological analysis of tree-ring samples to understand the historical growth environment of remnant savanna stems. We used release detection and branch-establishment dates to evaluate changes in tree growth and the establishment of savanna physiognomy. We contrasted our growth chronology with reference chronologies for regional tree growth, climate and human population dynamics. Results, Trees growing in Kentucky Inner Bluegrass Region (IBR) savanna remnants exhibited a period of suppression, extending from the establishment date of the tree to release events that occurred c. 1800. This release resulted in a tripling of the annual radial growth rate from levels typical of oaks suppressed under a forest canopy (< 1 mm year,1) to levels typical of open-grown stems (3 mm year,1). The growth releases in savanna trees coincided with low branch establishment. Over the release period, climatic conditions remained relatively constant and growth in regional forest trees was even; however, the growth increase in savanna stems was strongly correlated with a marked increase in Euro-American population density in the region. Main conclusions, Our data suggest that trees growing in savanna remnants originated in the understorey of a closed canopy forest. We hypothesize that Euro-American land clearing to create pasturelands released these trees from light competition and resulted in the savanna physiognomy that is apparent in remnant stands in the IBR. Although our data suggest that savanna trees originated in a forest understorey, this system structure itself may have been a result of an unprecedented lack of Native American activity in the region due to population loss associated with pandemics brought to North America by Euro-Americans. We present a hypothetical model that links human population dynamics, land-use activities and ecosystem structure. Our model focuses on the following three land-use eras: Native American habitation/utilization; land abandonment; and Euro-American land clearance. Ecological understanding of historical dynamics in other ecosystems of eastern North America may be enhanced through recognition of these eras. [source]


Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, Mexico

JOURNAL OF BIOGEOGRAPHY, Issue 1 2000
R. A. Minnich
Abstract Aim,This study appraises historical fire regimes for Californian mixed-conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed-conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location,The SSPM is a north,south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods,We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time-series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1-ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non-conifer trees and shrubs. Twenty-four stands were sampled on-the-ground by a point-centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results,Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25,45% cover and 65,145 trees per ha. Sapling densities were two to three times that of overstory trees. Size-age distributions of trees , 4 cm dbh indicate multi-age stands with steady-state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions,Our spatially-based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4,20 years proposed from California fire-scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole-size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build-up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site-based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests. [source]


Closing Ranks: Fundamentals in History, Politics and Anthropology

THE AUSTRALIAN JOURNAL OF ANTHROPOLOGY, Issue 2 2006
Kirsten Hastrup
In this presentation, I discuss fundamentalism from a processual perspective, seeking to tease out some general qualities of the processes involved in a return to fundamentals amidst social change. I start with an analysis of the historical dynamics of Icelandic society in the period 1400,1800, showing how the increasing insistence on old patterns and cultural fundamentals contributed to the gradual destruction of a one time flourishing medieval society. This devolution, I suggest, is closely correlated with a process of amplification (Sahlins) of a particular set of values, leading to a loss of flexibility in the response to environmental and other changes. Next follows a discussion of present day concerns with nationalism and other interests in bounding oneself off from the surrounding world, and demanding recognition in return. One of the processes discussed is a process of transvaluation (Tambiah), assimilating particulars to a larger and less context-bound scheme and thereby gradually deepening the cleavage between selves and others, sometimes to the point of epistemological closure (Ignatieff). Finally, one of the anthropological fundamentals, holism, is discussed with a view to reassessing its potential for present-day anthropology. It is argued that through the process of knowing implied in fieldwork, anthropologists arrive at a dual understanding of perceived wholes and creative agents. A new sense of holism may still grant both consistency and uniqueness to the anthropological discipline. [source]