Home About us Contact | |||
Histone Methyltransferases (histone + methyltransferase)
Selected AbstractsThe Emerging Therapeutic Potential of Histone Methyltransferase and Demethylase InhibitorsCHEMMEDCHEM, Issue 10 2009Astrid Spannhoff Dr. Abstract Epigenetics is defined as heritable changes to the transcriptome that are independent of changes in the genome. The biochemical modifications that govern epigenetics are DNA methylation and posttranslational histone modifications. Among the histone modifications, acetylation and deacetylation are well characterized, whereas the fields of histone methylation and especially demethylation are still in their infancy. This is particularly true with regard to drug discovery. There is strong evidence that these modifications play an important role in the maintenance of transcription as well as in the development of certain diseases. This article gives an overview of the mechanisms of action of histone methyltransferases and demethylases, their role in the formation of certain diseases, and available inhibitors. Special emphasis is placed on the strategies that led to the first inhibitors which are currently available and the screening approaches that were used in that process. [source] Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cellsGENES TO CELLS, Issue 1 2007Kohta Ikegami In the mammalian genome, numerous CpG-rich loci define tissue-dependent and differentially methylated regions (T-DMRs). Euchromatin from different cell types differs in terms of its tissue-specific DNA methylation profile as defined by these T-DMRs. G9a is a euchromatin-localized histone methyltransferase (HMT) and catalyzes methylation of histone H3 at lysines 9 and 27 (H3-K9 and -K27). To test whether HMT activity influences euchromatic cytosine methylation, we analyzed the DNA methylation status of approximately 2000 CpG-rich loci, which are predicted in silico, in G9a,/, embryonic stem cells by restriction landmark genomic scanning (RLGS). While the RLGS profile of wild-type cells contained about 1300 spots, 32 new spots indicating DNA demethylation were seen in the profile of G9a,/, cells. Virtual-image RLGS (Vi-RLGS) allowed us to identify the genomic source of ten of these spots. These were confirmed to be cytosine demethylated, not just at the Not I site detected by the RLGS but extending over several kilobase pairs in cis. Chromatin immunoprecipitation (ChIP) confirmed these loci to be targets of G9a, with decreased H3-K9 and/or -K27 dimethylation in the G9a,/, cells. These data indicate that G9a site-selectively contributes to DNA methylation. [source] Epigenetics of prostate cancer: beyond DNA methylationJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2006W. A. Schulz Abstract Epigenetic mechanisms permit the stable inheritance of cellular properties without changes in DNA sequence or amount. In prostate carcinoma, epigenetic mechanisms are essential for development and progression, complementing, amplifying and diversifying genetic alterations. DNA hypermethylation affects at least 30 individual genes, while repetitive sequences including retrotransposons and selected genes become hypomethylated. Hypermethylation of several genes occurs in a coordinate manner early in carcinogenesis and can be exploited for cancer detection, whereas hypomethylation and further hypermethylation events are associated with progression. DNA methylation alterations interact with changes in chromatin proteins. Prominent alterations at this level include altered patterns of histone modification, increased expression of the EZH2 polycomb histone methyltransferase, and changes in transcriptional corepressors and coactivators. These changes may make prostate carcinoma particularly susceptible to drugs targeting chromatin and DNA modifications. They relate to crucial alterations in a network of transcription factors comprising ETS family proteins, the androgen receptor, NKX3.1, KLF, and HOXB13 homeobox proteins. This network controls differentiation and proliferation of prostate epithelial cells integrating signals from hormones, growth factors and cell adhesion proteins that are likewise distorted in prostate cancer. As a consequence, prostate carcinoma cells appear to be locked into an aberrant state, characterized by continued proliferation of largely differentiated cells. Accordingly, stem cell characteristics of prostate cancer cells appear to be secondarily acquired. The aberrant differentiation state of prostate carcinoma cells also results in distorted mutual interactions between epithelial and stromal cells in the tumor that promote tumor growth, invasion, and metastasis. [source] Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomasHEPATOLOGY RESEARCH, Issue 11 2007Yutaka Kondo Aim:, The aim of the present study was to examine DNA methylation and histone modification changes in hepatocellular carcinomas (HCC). Methods:, DNA methylation in the P16, RASSF1a, progesterone receptor (PGR) and estrogen receptor , (ER,) promoters was determined by quantitative bisulfite-pyrosequencing technique in HCC patients. Histone H3-lysine (K) 4, H3-K9 and H3-K27 modifications in all these four genes were examined by chromatin immunoprecipitation (ChIP) assay in HCC cell lines. Expression of two DNA methyltransferases (DNMT1 and DNMT3b) and three histone methyltransferases (SUV39H1, G9a and EZH2) in HCC patients was measured by real-time polymerase chain reaction. Results:, Aberrant DNA methylation was detected in all the HCC. Patients with DNA methylation in the RASSF1a, PGR andER, promoters in cancers also had substantial DNA methylation in their non-cancerous liver tissues, whereas DNA methylation in the P16 promoter was cancer specific. Epigenetic states in HCC cell lines showed that silencing of P16 and RASSF1a depended on DNA methylation and histone H3-K9 methylation. However, silencing of the PGR and ER, genes was more closely related to H3-K27 methylation rather than DNA methylation. Consistent with the alteration of histone status, higher expression of G9a and EZH2 was found in HCC than in non-cancerous liver tissues (P < 0.01). Conclusion:, These data suggest that multiple epigenetic silencing mechanisms are inappropriately active in HCC cells. [source] Global H3K9 dimethylation status is not affected by transcription, translation, or DNA replication in porcine zygotesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2010Ki-Eun Park Methylation of the lysine 9 residue of histone H3 (H3K9) is linked to transcriptional repression. The observed structure of chromatin in porcine and murine embryos is different with regard to H3K9 dimethylation status, leading to our hypothesis that the intracellular mechanisms responsible for H3K9 methylation would also differ between these two species. The objectives of this study were: (1) to determine the extent that DNA, mRNA, and protein synthesis serve in maintaining the asymmetrical distribution of dimethylated H3K9 in porcine zygotes, (2) determine the extent to which the intracellular localization of individual pronuclei correlated with H3K9 dimethylation status, and (3) to determine the abundance of transcripts encoding the histone methyltransferases, with H3K9 methylation activity, in porcine oocytes and embryos. Our findings are that (1) H3K9 dimethylation status is not affected by DNA replication, transcription, or protein synthesis, (2) the location of a pronucleus does not significantly affect the H3K9 dimethylation status of the chromatin within that pronucleus, and (3) the histone methyltransferases with activity for H3K9 differ in transcript abundance in porcine oocytes and cleavage stage embyros. These results support our hypothesis that there is a difference in intracellular mechanisms affecting dimethylation status of H3K9 between porcine and murine embryos. Mol. Reprod. Dev. 77: 420,429, 2010. © 2010 Wiley-Liss, Inc. [source] The Emerging Therapeutic Potential of Histone Methyltransferase and Demethylase InhibitorsCHEMMEDCHEM, Issue 10 2009Astrid Spannhoff Dr. Abstract Epigenetics is defined as heritable changes to the transcriptome that are independent of changes in the genome. The biochemical modifications that govern epigenetics are DNA methylation and posttranslational histone modifications. Among the histone modifications, acetylation and deacetylation are well characterized, whereas the fields of histone methylation and especially demethylation are still in their infancy. This is particularly true with regard to drug discovery. There is strong evidence that these modifications play an important role in the maintenance of transcription as well as in the development of certain diseases. This article gives an overview of the mechanisms of action of histone methyltransferases and demethylases, their role in the formation of certain diseases, and available inhibitors. Special emphasis is placed on the strategies that led to the first inhibitors which are currently available and the screening approaches that were used in that process. [source] |