Histochemical Markers (histochemical + marker)

Distribution by Scientific Domains


Selected Abstracts


Lectin-binding pattern of primary malignant melanomas and melanocytic nevi

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2000
A. Monastirli
A panel of six biotinylated lectins was applied in order to study the composition and distribution of plasma membrane carbohydrate residues in 83 primary cutaneous melanomas (MMs) and in 85 melanocytic nevi (MN) with the avidin-biotin peroxidase technique. No clear-cut differences between MN and MMs were observed with regard to the staining with lectins. In MN and MMs derived from different patients, the lectin-binding pattern was variable and heterogeneous even within the individual nevi or melanomas. It seems reasonable, therefore, to assume that the lectin-binding pattern cannot be regarded as a reliable histochemical marker for the differentiation of MN from MMs. Moreover, because the pattern reveals no statistically significant correlation with the thickness or the depth of invasion of MM, it seems to lack prognostic significance. [source]


Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imaging

JOURNAL OF ANATOMY, Issue 4 2010
Lana Vasung
Abstract The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal pathways (external capsule, cerebral stalk,internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13,14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24,26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ,waiting' compartments during the path-finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter. [source]


Development of nitrergic neurons in the nervous system of the locust embryo

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 8 2010
Michael Stern
We followed the development of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) system during locust embryogenesis in whole mount nervous systems and brain sections by using various cytochemical techniques. We visualized NO-sensitive neurons by cGMP immunofluorescence after incubation with an NO donor in the presence of the soluble guanylyl cyclase (sGC) activator YC-1 and the phosphodiesterase-inhibitor isobutyl-methyl-xanthine (IBMX). Central nervous system (CNS) cells respond to NO as early as 38% embryogenesis. By using the NADPH-diaphorase technique, we identified somata and neurites of possible NO-synthesizing cells in the CNS. The first NADPH-diaphorase-positive cell bodies appear around 40% embryogenesis in the brain and at 47% in the ventral nerve cord. The number of positive cells reaches the full complement of adult cells at 80%. In the brain, some structures, e.g., the mushroom bodies acquire NADPH-diaphorase staining only postembryonically. Immunolocalization of L-citrulline confirmed the presence of NOS in NADPH-diaphorase-stained neurons and, in addition, indicated enzymatic activity in vivo. In whole mount ventral nerve cords, citrulline immunolabeling was present in varying subsets of NADPH-diaphorase-positive cells, but staining was very variable and often weak. However, in a regeneration paradigm in which one of the two connectives between ganglia had been crushed, strong, reliable staining was observed as early as 60% embryogenesis. Thus, citrulline immunolabeling appears to reflect specific activity of NOS. However, in younger embryos, NOS may not always be constitutively active or may be so at a very low level, below the citrulline antibody detection threshold. For the CNS, histochemical markers for NOS do not provide conclusive evidence for a developmental role of this enzyme. J. Comp. Neurol. 518:1157,1175, 2010. © 2010 Wiley-Liss, Inc. [source]


Development of nitrergic neurons in the nervous system of the locust embryo

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 8 2010
Michael Stern
Abstract We followed the development of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) system during locust embryogenesis in whole mount nervous systems and brain sections by using various cytochemical techniques. We visualized NO-sensitive neurons by cGMP immunofluorescence after incubation with an NO donor in the presence of the soluble guanylyl cyclase (sGC) activator YC-1 and the phosphodiesterase-inhibitor isobutyl-methyl-xanthine (IBMX). Central nervous system (CNS) cells respond to NO as early as 38% embryogenesis. By using the NADPH-diaphorase technique, we identified somata and neurites of possible NO-synthesizing cells in the CNS. The first NADPH-diaphorase-positive cell bodies appear around 40% embryogenesis in the brain and at 47% in the ventral nerve cord. The number of positive cells reaches the full complement of adult cells at 80%. In the brain, some structures, e.g., the mushroom bodies acquire NADPH-diaphorase staining only postembryonically. Immunolocalization of L-citrulline confirmed the presence of NOS in NADPH-diaphorase-stained neurons and, in addition, indicated enzymatic activity in vivo. In whole mount ventral nerve cords, citrulline immunolabeling was present in varying subsets of NADPH-diaphorase-positive cells, but staining was very variable and often weak. However, in a regeneration paradigm in which one of the two connectives between ganglia had been crushed, strong, reliable staining was observed as early as 60% embryogenesis. Thus, citrulline immunolabeling appears to reflect specific activity of NOS. However, in younger embryos, NOS may not always be constitutively active or may be so at a very low level, below the citrulline antibody detection threshold. For the CNS, histochemical markers for NOS do not provide conclusive evidence for a developmental role of this enzyme. J. Comp. Neurol. 518:1157,1175, 2010. © 2009 Wiley-Liss, Inc. [source]