Home About us Contact | |||
High-throughput Technologies (high-throughput + technology)
Selected AbstractsAlcohol Biomarkers in Applied Settings: Recent Advances and Future Research OpportunitiesALCOHOLISM, Issue 6 2010Raye Z. Litten During the past decade, advances have been made in the identification, development, and application of alcohol biomarkers. This is important because of the unique functions that alcohol biomarkers can serve in various applied settings. To carry out these functions, biomarkers must display several features including validity, reliability, adequacy of temporal window of assessment, reasonable cost, and transportability. During the past two decades, several traditional alcohol biomarkers have been studied in multiple human studies. Meanwhile, several new, promising biomarkers, including various alcohol metabolites and alcohol biosensors, are being explored in human studies. In addition, researchers have explored using biomarkers in combination and using biomarkers in combination with self-reports, resulting in increased sensitivity with little sacrifice in specificity. Despite these advances, more research is needed to validate biomarkers, especially the new ones, in humans. Moreover, recent advances in high-throughput technologies for genomics, proteomics, and metabolomics offer unique opportunities to discover novel biomarkers, while additional research is needed to perfect newly developed alcohol sensors. Development of more accurate biomarkers will help practicing clinicians to more effectively screen and monitor individuals who suffer from alcohol use disorders. [source] Discovering functions and revealing mechanisms at molecular level from biological networksPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2007Shihua Zhang Abstract With the increasingly accumulated data from high-throughput technologies, study on biomolecular networks has become one of key focuses in systems biology and bioinformatics. In particular, various types of molecular networks (e.g., protein,protein interaction (PPI) network; gene regulatory network (GRN); metabolic network (MN); gene coexpression network (GCEN)) have been extensively investigated, and those studies demonstrate great potentials to discover basic functions and to reveal essential mechanisms for various biological phenomena, by understanding biological systems not at individual component level but at a system-wide level. Recent studies on networks have created very prolific researches on many aspects of living organisms. In this paper, we aim to review the recent developments on topics related to molecular networks in a comprehensive manner, with the special emphasis on the computational aspect. The contents of the survey cover global topological properties and local structural characteristics, network motifs, network comparison and query, detection of functional modules and network motifs, function prediction from network analysis, inferring molecular networks from biological data as well as representative databases and software tools. [source] First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical valueACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2006L. Banci The EC `Structural Proteomics In Europe' contract is aimed specifically at the atomic resolution structure determination of human protein targets closely linked to health, with a focus on cancer (kinesins, kinases, proteins from the ubiquitin pathway), neurological development and neurodegenerative diseases and immune recognition. Despite the challenging nature of the analysis of such targets, ,170 structures have been determined to date. Here, the impact of high-throughput technologies, such as parallel expression of multiple constructs, the use of standardized refolding protocols and optimized crystallization screens or the use of mass spectrometry to assist sample preparation, on the structural biology of mammalian protein targets is illustrated through selected examples. [source] Genes differentially expressed in prostate cancerBJU INTERNATIONAL, Issue 8 2004I.E. Eder Because of the heterogeneity of prostate cancer knowledge about the genes involved in prostate carcinogenesis is still very limited. Previously, the use of novel high-throughput technologies offered the possibility to investigate broad gene expression profiles and thus helped to improve understanding of the molecular basis of prostate disease. Many candidate genes have been identified so far which have a more or less strong effect on prostate cancer. This vast number of gene expression changes show that it is unlikely that only one gene promotes prostate cancer. Conversely, it seems more likely that a broad network of molecular changes is involved in the complex cascade of events which lead to tumour formation and progression, respectively. A few of these novel molecular targets are currently under clinical evaluation. This paper gives an overview of several interesting candidate genes which may be useful as improved biomarkers for diagnosis or as targets for developing novel treatment methods. [source] Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlinesJOURNAL OF SYNCHROTRON RADIATION, Issue 3 2008Yusuke Yamada Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client,server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. [source] |