High-quality Habitat (high-quality + habitat)

Distribution by Scientific Domains


Selected Abstracts


Tracking Fragmentation of Natural Communities and Changes in Land Cover: Applications of Landsat Data for Conservation in an Urban Landscape (Chicago Wilderness)

CONSERVATION BIOLOGY, Issue 4 2001
Yeqiao Wang
Within the metropolis survive some of the world's best remaining examples of eastern tallgrass prairie, oak savanna, open oak woodland, and prairie wetland. Chicago Wilderness is more than 81,000 ha of protected areas in the urban and suburban matrix. It also is the name of the coalition of more than 110 organizations committed to the survival of these natural lands. The long-term health of these imperiled communities depends on proper management of the more extensive, restorable lands that surround and connect the patches of high-quality habitat. Information critical to the success of conservation efforts in the region includes (1) a current vegetation map of Chicago Wilderness in sufficient detail to allow quantitative goal setting for the region's biodiversity recovery plan; (2) quantified fragmentation status of the natural communities; and (3) patterns of land-cover change and their effects on the vitality of communities under threat. We used multispectral data from the Landsat thematic mapper (October 1997) and associated ground truthing to produce a current vegetation map. With multitemporal remote-sensing data (acquired in 1972, 1985, and 1997), we derived land-cover maps of the region at roughly equivalent intervals over the past 25 years. Analyses with geographic information system models reveal rapid acceleration of urban and suburban sprawl over the past 12 years. Satellite images provide striking visual comparisons of land use and health. They also provide banks of geographically referenced data that make quantitative tracking of trends possible. The data on habitat degradation and fragmentation are the biological foundation of quantitative goals for regional restoration. Resumen: En Chicago hay una concentración de comunidades naturales globalmente significativas sorprendentemente alta. En la metrópolis sobreviven algunos de los mejores ejemplos mundiales remanentes de praderas de pastos orientales, sabanas de roble, bosques abiertos de roble y humedales de pradera. Chicago Wilderness es más de 81,000 ha de áreas protegidas en la matriz urbana y suburbana. También es el nombre de una coalición de más de 110 organizaciones dedicadas a la supervivencia de esas tierras naturales. La salud a largo plazo de estas comunidades amenazadas depende del manejo adecuado de las tierras, más extensas y restaurables, que rodean y conectan a los fragmentos de hábitat de alta calidad. La información crítica para el éxito de los esfuerzos de conservación en la región incluye: (1) un mapa actualizado de la vegetación de Chicago Wilderness con suficiente detalle para que la definición de metas cuantitativas para el plan de recuperación de la región sea posible; (2) cuantificación de la fragmentación de las comunidades naturales y (3) patrones de cambio de cobertura de suelo y sus efectos sobre la vitalidad de las comunidades amenazadas. Utilizamos datos multiespectrales del mapeador temático Landsat (octubre 1997) y verificaciones de campo asociadas para producir el mapa actualizado de vegetación. Con datos de percepción remota multitemporales (obtenidos en 1972, 1985 y 1997), derivamos los mapas de cobertura de suelo en la región en intervalos equivalentes en los últimos 25 años. El análisis de los modelos SIG revela una rápida aceleramiento del crecimiento urbano y suburbano en los últimos 12 años. Las imágenes de satélite proporcionan comparaciones visuales notables del uso y condición del suelo. También proporcionan bancos de datos referenciados geográficamente que hacen posible el rastreo de tendencias cuantitativas. Los datos de degradación y fragmentación del hábitat son la base biológica de metas cuantitativas para la restauración regional. [source]


Optimal conservation planning for migratory animals: integrating demographic information across seasons

CONSERVATION LETTERS, Issue 3 2010
Justin Sheehy
Abstract Conservation strategies for migratory animals are typically based on ad-hoc or simple ranking methods and focus on a single period of the annual cycle. We use a density-dependent population model to examine one-time land purchase strategies for a migratory population with a breeding and wintering grounds. Under equal rates of habitat loss, we show that it is optimal to invest more, but never solely, in the habitat with the higher density dependence to habitat cost ratio. When there are two habitats that vary in quality within a season, the best strategy is to invest only in one habitat. Whether to purchase high- or low-quality habitat depends on the general life history of the species and the ratio of habitat quality to habitat cost. When carry-over effects are incorporated, it is almost always optimal to invest in high-quality habitat during the season that produces the carry-over effect. We apply this model to a threatened warbler population and show the optimal strategy is to purchase more breeding than wintering habitat despite the fact that breeding habitat is over ten times more expensive. Our model provides a framework for developing year-round conservation strategies for migratory animals and has important implications for long-term planning and management. [source]


The silver spoon effect and habitat selection by natal dispersers

ECOLOGY LETTERS, Issue 11 2006
Judy A. Stamps
Abstract The silver spoon effect in the context of habitat selection occurs when dispersers in good condition are more likely to settle in high-quality habitats than dispersers in poor condition. Positive relationships between disperser condition and the quality of post-dispersal habitats are predicted by at least two non-exclusive ultimate hypotheses. The competition hypothesis assumes that a disperser's condition affects its chances of competing for space or joining an established group after arriving at a high-quality habitat, while the search hypothesis assumes that a disperser's condition affects its selectivity, and hence its chances of accepting a lower-quality habitat when it is searching for a new habitat. Thus far, silver spoon effects in the context of habitat selection have been reported in only a handful of species (several birds and marine invertebrates), but this study suggests that they may be relatively common in particular species and situations. [source]


A silver spoon for a golden future: long-term effects of natal origin on fitness prospects of oystercatchers (Haematopus ostralegus)

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2006
MARTIJN VAN DE POL
Summary 1Long-term effects of conditions during early development on fitness are important for life history evolution and population ecology. Using multistrata mark,recapture models on 20 years of data, we quantified the relation between rearing conditions and lifetime fitness in a long-lived shorebird, the oystercatcher (Haematopus ostralegus). We addressed specifically the relative contribution of short- and long-term effects of rearing conditions to overall fitness consequences. 2Rearing conditions were defined by differences in natal habitat quality, in which there is a clear dichotomy in our study population. In the first year of life, fledglings from high-quality natal origin had a 1·3 times higher juvenile survival. Later in life (age 3,11), individuals of high-quality natal origin had a 1·6 times higher adult prebreeder survival. The most striking effect of natal habitat quality was that birds that were reared on high-quality territories had a higher probability of settling in high-quality habitat (44% vs. 6%). Lifetime reproductive success of individuals born in high-quality habitat was 2·2 times higher than that of individuals born in low-quality habitat. This difference increased further when fitness was calculated over several generations, due to a correlation between the quality of rearing conditions of parents and their offspring. 3Long-term effects of early conditions contributed more to overall fitness differences as short-term consequences, contrary to common conceptions on this issue. 4This study illustrates that investigating only short-term effects of early conditions can lead to the large underestimation of fitness consequences. We discuss how long-term consequences of early conditions may affect settlement decisions and source,sink population interactions. [source]


Dispersal and genetic structure in the American marten, Martes americana

MOLECULAR ECOLOGY, Issue 6 2006
T. BROQUET
Abstract Natal dispersal in a vagile carnivore, the American marten (Martes americana), was studied by comparing radio-tracking data and microsatellite genetic structure in two populations occupying contrasting habitats. The genetic differentiation determined among groups of individuals using FST indices appeared to be weak in both landscapes, and showed no increase with geographical distance. Genetic structure investigated using pairwise genetic distances between individuals conversely showed a pattern of isolation by distance (IBD), but only in the population occurring in a homogeneous high-quality habitat, therefore showing the advantage of individual-based analyses in detecting within-population processes and local landscape effects. The telemetry study of juveniles revealed a leptokurtic distribution of dispersal distances in both populations, and estimates of the mean squared parent,offspring axial distance (,2) inferred both from the genetic pattern of IBD and from the radio-tracking survey showed that most juveniles make little contribution to gene flow. [source]


The silver spoon effect and habitat selection by natal dispersers

ECOLOGY LETTERS, Issue 11 2006
Judy A. Stamps
Abstract The silver spoon effect in the context of habitat selection occurs when dispersers in good condition are more likely to settle in high-quality habitats than dispersers in poor condition. Positive relationships between disperser condition and the quality of post-dispersal habitats are predicted by at least two non-exclusive ultimate hypotheses. The competition hypothesis assumes that a disperser's condition affects its chances of competing for space or joining an established group after arriving at a high-quality habitat, while the search hypothesis assumes that a disperser's condition affects its selectivity, and hence its chances of accepting a lower-quality habitat when it is searching for a new habitat. Thus far, silver spoon effects in the context of habitat selection have been reported in only a handful of species (several birds and marine invertebrates), but this study suggests that they may be relatively common in particular species and situations. [source]