High-precision Measurements (high-precision + measurement)

Distribution by Scientific Domains


Selected Abstracts


High-precision measurement of internuclear distances using solid-state NMR

CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2008
Jae-Seung Lee
Abstract Today, nuclear magnetic resonance (NMR) is among the most efficient tools in structural studies. Measurement of interatomic distances is the most common way of determining high-resolution structures of molecules using NMR techniques. In this article, we describe NMR techniques for static powder samples, based on a two-dimensional single-echo scheme, enhanced with adiabatic cross-polarization. They can significantly increase the accuracy of measuring internuclear distances and turn NMR into a high-precision crystallographic technique, complementing the X-ray, and neutron-scattering methods. Experimental examples are presented for intramolecular CN and CC distances in ,-crystalline form of glycine. © 2008 Wiley Periodicals, Inc. Concepts Magn Reson Part A 32A: 56,67, 2008. [source]


Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2010
M. Naujoks
SUMMARY An approach for the evaluation of local hydrological modelling is presented: the deployment of temporal terrestrial gravity measurements and gravimetric 3-D modelling in addition to hydrological point observations. Of particular interest is to what extent such information can be used to improve the understanding of hydrological process dynamics and to evaluate hydrological models. Because temporal gravity data contain integral information about hydrological mass changes they can be considered as a valuable augmentation to traditional hydrological observations. On the other hand, hydrological effects need to be eliminated from high-quality gravity time-series because they interfere with small geodynamic signals. In areas with hilly topography and/or inhomogeneous subsoil, a simple reduction based on hydrological point measurements is usually not sufficient. For such situations, the underlying hydrological processes in the soil and the disaggregated bedrock need to be considered in their spatial and temporal dynamics to allow the development of a more sophisticated reduction. Regarding these issues interdisciplinary research has been carried out in the surroundings of the Geodynamic Observatory Moxa, Germany. At Moxa, hydrologically induced gravity variations of several 10 nm s,2 are observed by the stationarily operating superconducting gravimeter and by spatially distributed and repeated high-precision measurements with transportable relative instruments. In addition, hydrological parameters are monitored which serve as input for a local hydrological catchment model for the area of about 2 km2 around the observatory. From this model, spatial hydrological variations are gained in hourly time steps and included as density changes of the subsoil in a well-constrained gravimetric 3-D model to derive temporal modelled gravity variations. The gravity variations obtained from this combined modelling correspond very well to the observed hydrological gravity changes for both, short period and seasonal signals. From the modelling the amplitude of the impact on gravity of hydrological changes occurring in different distances to the gravimeter location can be inferred. Possible modifications on the local hydrological model are discussed to further improve the quality of the model. Furthermore, a successful reduction of local hydrological effects in the superconducting gravimeter data is developed. After this reduction global seasonal fluctuations are unmasked which are in correspondence to GRACE observations and to global hydrological models. [source]


Measurements of photon interference X-ray absorption fine structure (,XAFS)

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2001
Larc Tröger
Experimental data are presented which demonstrate the existence of a fine structure in extended X-ray absorption spectra due to interference effects in the initial photon state (,XAFS). Interference occurs between the incident electromagnetic wave and its coherently scattered waves from neighboring atoms. Using fine platinum and tungsten powders as well as polycrystalline platinum foil, ,XAFS was measured in high-precision absorption experiments at beamline X1 at HASYLAB/DESY over a wide energy range. ,XAFS is observed below and above absorption-edge positions in both transmission and total-electron-yield detection. Based on experimental data it is shown that ,XAFS is sensitive to geometric atomic structure. Fourier-transformed ,XAFS data carry information, comparable with that of EXAFS, about the short-range-order structure of the sample. Sharp structures occur in ,XAFS when a Bragg backscattering condition of the incident X-rays is fulfilled. They allow precise measurement of long-range-order structural information. Measured data are compared with simulations based on ,XAFS theory. Although ,XAFS structures are similarly observed in two detection techniques, the importance of scattering off the sample for the measurements needs to be investigated further. Disentangling ,XAFS, multielectron photoexcitations and atomic XAFS in high-precision measurements close to absorption edges poses a challenge for future studies. [source]


The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2003
Ed Hawkins
ABSTRACT We present a detailed analysis of the two-point correlation function, ,(,, ,), from the 2dF Galaxy Redshift Survey (2dFGRS). The large size of the catalogue, which contains ,220 000 redshifts, allows us to make high-precision measurements of various properties of the galaxy clustering pattern. The effective redshift at which our estimates are made is zs, 0.15, and similarly the effective luminosity, Ls, 1.4L*. We estimate the redshift-space correlation function, ,(s), from which we measure the redshift-space clustering length, s0= 6.82 ± 0.28 h,1 Mpc. We also estimate the projected correlation function, ,(,), and the real-space correlation function, ,(r), which can be fit by a power law (r/r0), with r0= 5.05 ± 0.26 h,1 Mpc, ,r= 1.67 ± 0.03. For r, 20 h,1 Mpc, , drops below a power law as, for instance, is expected in the popular , cold dark matter model. The ratio of amplitudes of the real- and redshift-space correlation functions on scales of 8,30 h,1 Mpc gives an estimate of the redshift-space distortion parameter ,. The quadrupole moment of ,(,, ,) on scales 30,40 h,1 Mpc provides another estimate of ,. We also estimate the distribution function of pairwise peculiar velocities, f(v), including rigorously the significant effect due to the infall velocities, and we find that the distribution is well fit by an exponential form. The accuracy of our ,(,, ,) measurement is sufficient to constrain a model, which simultaneously fits the shape and amplitude of ,(r) and the two redshift-space distortion effects parametrized by , and velocity dispersion, a. We find ,= 0.49 ± 0.09 and a= 506 ± 52 km s,1, although the best-fitting values are strongly correlated. We measure the variation of the peculiar velocity dispersion with projected separation, a(,), and find that the shape is consistent with models and simulations. This is the first time that , and f(v) have been estimated from a self-consistent model of galaxy velocities. Using the constraints on bias from recent estimates, and taking account of redshift evolution, we conclude that , (L=L*, z= 0) = 0.47 ± 0.08, and that the present-day matter density of the Universe, ,m, 0.3, consistent with other 2dFGRS estimates and independent analyses. [source]


Absolute measurement of lattice parameter in single crystals and epitaxic layers on a double-crystal X-ray diffractometer

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 3 2005
M. Fatemi
Details of the recently developed `zone technique' for the absolute measurement of lattice parameter and strain in single-crystal solids and thin films are presented. The method is based on measuring X-ray rocking curves from a few equatorial planes within a suitable zone and correcting their peak positions at once with a single zero offset. In contrast to the comparative method, which usually requires use of two opposite azimuthal directions, those in the zone technique can often be completed in only one azimuthal setting. A typical strained layer in the cubic system can be fully and rapidly characterized with only three rocking curves. The technique is suitable for routine applications under typical laboratory conditions, and for high-precision measurements of nearly perfect crystals in a controlled environment, with a potential parts in 10,million accuracy. This degree of accuracy is a direct consequence of the zero offset correction procedure, which effectively cancels a large portion of the misalignment errors in the diffractometer. The use of the (n,,n) geometry substantially reduces the errors of eccentricity compared to the Bond technique, and its stronger reflections enable the measurement of small samples about 0.05,mm in length with relative ease. The technique is illustrated with examples, and its extension to the triple-axis (,,2,) instruments is discussed. [source]