Highly Dynamic (highly + dynamic)

Distribution by Scientific Domains


Selected Abstracts


In vivo dynamics of CNS sensory arbor formation: A time-lapse study in the embryonic leech

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2003
Michael W. Baker
Abstract In the embryo of the leech Hirudo medicinalis, afferent projections of peripheral sensory neurons travel along common nerve tracts to the CNS, where they defasciculate, branch, and arborize into separate, modality-specific synaptic laminae. Previous studies have shown that this process requires, at least in part, the constitutive and then modality-specific glycosylations of tractin, a leech L1 homologue. We report here on the dynamics of growth of these projections as obtained by examining the morphology of single growing dye-filled sensory afferents as a function of time. Using 2-photon laser-scanning microscopy of the intact developing embryo, we obtained images of individual sensory projections at 3 to 30 min intervals, over several hours of growth, and at different stages of development. The time-lapse series of images revealed a highly dynamic and maturation-state-dependent pattern of growth. Upon entering the CNS, the growth cone-tipped primary axon sprouted numerous long filopodial processes, many of which appeared to undergo repeated cycles of extension and retraction. The growth cone was transformed into a sensory arbor through the formation of secondary branches that extended within the ganglionic neuropil along the anterior-posterior axis of the CNS. Numerous tertiary and quaternary processes grew from these branches and also displayed cycles of extension and retraction. The motility of these higher-order branches changed with age, with younger afferents displaying higher densities and greater motility than older, more mature sensory arbors. Finally, coincident with a reduction in higher order projections was the appearance of concavolar structures on the secondary processes. Rows of these indentations suggest the formation of presynaptic en-passant specializations accompanying the developmental onset of synapse formation. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 41,53, 2003 [source]


The wholesale and retail markets of London, 1660,1840

ECONOMIC HISTORY REVIEW, Issue 1 2002
Colin Smith
Markets and marketing are perennial themes in English economic and social history. Yet they remain largely unexplored in relation to London during a period of remarkable growth and change, the long eighteenth century. This article begins to fill that void, by surveying over 70 London produce markets that existed during the period, and identifying patterns in their collective development. It concludes that the physical market place, though ancient in origin, evolved through the ,commercial revolution' as a highly dynamic and diverse institution that played a significant role in London's distribution. [source]


Impaired intercellular adhesion and immature adherens junctions in merlin-deficient human primary schwannoma cells

GLIA, Issue 5 2008
C. Flaiz
Abstract Schwannomas that occur spontaneously or in patients with neurofibromatosis Type 2, lack both alleles for the tumor suppressor and plasma membrane-cytoskeleton linker merlin. We have shown that human primary schwannoma cells display activation of the RhoGTPases Rac1 and Cdc42 which results in highly dynamic and ongoing protrusive activity like ruffling. Ruffling is an initial and temporally limited step in the formation of intercellular contacts like adherens junctions that are based on the cadherin-catenin system. We tested if there is a connection between Rac1-induced ongoing ruffling and the maintenance, stabilization and functionality of adherens junctions and if this is of relevance in human, merlin-deficient schwannoma cells. We show intense ongoing ruffling is not limited to membranes of single human primary schwannoma cells, but occurs also in membranes of contacting cells, even when confluent. Live cell imaging shows that newly formed contacts are released after a short time, suggesting disturbed formation or stabilization of adherens junctions. Morphology, high phospho-tyrosine levels and cortactin staining indicate that adherens junctions are immature in human primary schwannoma cells, whereas they display characteristics of mature adherens junctions in human primary Schwann cells. When merlin is reintroduced, human primary schwannoma cells show only initial ruffling in contacting cells and adherens junctions appear more mature. We therefore propose that ongoing Rac-induced ruffling causes immature adherens junctions and leads to impaired, nonfunctional intercellular adhesion in aggregation assays in merlin-deficient schwannoma cells that could be an explanation for increased proliferation rates due to loss of contact inhibition or tumor development in general. © 2008 Wiley-Liss, Inc. [source]


Long-term land-cover changes in the Belgian Ardennes (1775,1929): model-based reconstruction vs. historical maps

GLOBAL CHANGE BIOLOGY, Issue 7 2002
C. C. Petit
Abstract Understanding long-term human-environment interactions requires historical reconstruction of past land-cover changes. The objective of this study is to reconstruct past land-use and land-cover changes in a rural municipality of the Belgian Ardennes over the last 250 years. Two approaches were compared. The first approach produced backward projections based on a mechanistic model which computes the demand for different land uses under the assumption of an equilibrium between the production and consumption of resources. The second approach involved using a series of historical maps to extract directly land-use areas. A stochastic Markov chain model was also used to project backward missing land-cover data in the time series. The consistency between the results obtained with the different approaches suggests that land-use area can be successfully reconstructed on the basis of the mechanistic model, under conditions of a subsistence farming system and a closed economy. Land-use/cover changes in the Belgian Ardennes from 1775 to 1929 were more driven by the interventionist measures of the Belgian government and by technological progress than by the ,pressure' of the growing population and livestock. Thanks to agricultural intensification, a decrease in land under human use was supporting increasing human and livestock populations from 1846 to 1880. Reforestation has accelerated since the mid-19th century. This case study illustrates the highly dynamic and non-linear character of land-use change trajectories over long time periods and their strong interactions with the history of societies. [source]


A proactive management algorithm for self-healing mobile ad hoc networks

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, Issue 3 2008
Adel F. Iskander
The ability to proactively manage mobile ad hoc networks (MANETs) is critical for supporting complex services such as quality of service, security and access control in these networks. This paper focuses on the problem of managing highly dynamic and resource-constrained MANET environments through the proposal of a novel proactive management algorithm (PMA) for self-healing MANETs. PMA is based on an effective integration of autonomous, predictive and adaptive distributed management strategies. Proactive management is achieved through the distributed analysis of the current performance of the mobile nodes utilizing an optimistic discrete event simulation method, which is used to predict the mobile nodes' future status, and execution a proactive fault-tolerant management scheme. PMA takes advantage of distributed parallel processing, flexibility and intelligence of active packets to minimize the management overhead, while adapting to the highly dynamic and resource-constrained nature of MANETs. The performance of the proposed architecture is validated through analytical performance analysis and comparative simulation with the Active Virtual Network Management Protocol. The simulation results demonstrate that PMA not only significantly reduces management control overhead, but also improves both the performance and the stability of MANETs. Copyright © 2007 John Wiley & Sons, Ltd. [source]


On-line estimation and path planning for multiple vehicles in an uncertain environment

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 8 2004
Jarurat Ousingsawat
Abstract A unified approach to cooperative target tracking and path planning for multiple vehicles is presented. All vehicles, friendly and adversarial, are assumed to be aircraft. Unlike the typical target tracking problem that uses the linear state and nonlinear output dynamics, a set of aircraft nonlinear dynamics is used in this work. Target state information is estimated in order to integrate into a path planning framework. The objective is to fly from a start point to a goal in a highly dynamic, uncertain environment with multiple friendly and adversarial vehicles, without collision. The estimation architecture proposed is consistent with most path planning methods. Here, the path planning approach is based on evolutionary computation technique which is then combined with a nonlinear extended set membership filter in order to demonstrate a unified approach. A cooperative estimation approach among friendly vehicles is shown to improve speed and routing of the path. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Zebrafish cnbp intron1 plays a fundamental role in controlling spatiotemporal gene expression during embryonic development

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2009
Andrea M.J. Weiner
Abstract Cellular nucleic acid binding protein (CNBP) is a strikingly conserved zinc-finger nucleic acid chaperone required for forebrain development. Its depletion causes forebrain truncation mainly as a consequence of a reduction in size of craniofacial structures and neural crest derivatives. The CNBP expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. CNBP expression is highly conserved between all vertebrates characterized. In this study we have combined comparative sequence analysis and in vivo testing of DNA fragments in zebrafish to identify evolutionarily constrained regulatory motifs that likely control expression of the cnbp gene in embryos. We found a novel exon sequence located 5, upstream of the Exon1-sequence reported in most databases, and two transcription start sites that generate two primary-transcripts that differ in their 5,UTRs and expression profile during zebrafish embryonic development. Furthermore, we found a region inside the intron1 sequence that controls the cnbp developmental-specific transcriptional activation. Conserved binding sites for neural crest transcription factors were identified in this region. Mutagenesis analysis of the regulatory region revealed that Pax6/FoxD3 binding sites are required for proper zygotic cnbp expression. This is the first study that identifies, in vivo, cis -regulatory sequences inside intron sequences and typical neural crest transcription factors involved in cnbp spatiotemporal specific transcriptional control during vertebrate embryonic development. J. Cell. Biochem. 108: 1364,1375, 2009. © 2009 Wiley-Liss, Inc. [source]


Dynamic expression of Krüppel-like factor 4 (Klf4), a target of transcription factor AP-2, during murine mid-embryogenesis

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2003
Julia Ehlermann
Abstract Krüppel-like factor 4 (Klf4) belongs to the family of transcription factors that are thought to be involved in the regulation of epithelial and germ cell differentiation, based on their expression in postproliferative cells of the skin, gut, and testes. Gene ablation experiments suggest that Klf4 plays a role in keratinocyte differentiation, since mice lacking Klf4 fail to establish proper barrier function and, as a consequence, die postnatally due to dehydration. Recent studies have shown that Klf4 is also expressed in postnatal male mice, in postmeiotic sperm cells undergoing terminal differentiation into sperm cells. However, prior to the current study, the expression pattern of Klf4 during early and mid-embryogenesis had not been examined. Here we demonstrate that Klf4 transcripts can be detected from embryonic day 4.5 (E4.5) on in the developing conceptus, and that Klf4 expression before E10 is restricted to extraembryonic tissues. The embryo proper displays a highly dynamic and changing Klf4 signal from E10 of murine development on. In addition to being expressed in a stripe of mesenchymal cells extending from the forelimb bud rostrally over the branchial arches to the developing eye, Klf4 is also expressed in the mesenchyme surrounding the nasal pit at day E11.5. In addition, Klf4 has been detected in the apical ectodermal ridge and adjacent mesenchymal cells in the limb buds, and in mesenchymal cells of the developing body wall in trunk areas. These findings suggest that Klf4 plays an important role in regulating cellular proliferation, which underlies the morphogenetic changes that shape the developing embryo. Anat Rec Part A 273A:677,680, 2003. © 2003 Wiley-Liss, Inc. [source]