High-grade Part (high-grade + part)

Distribution by Scientific Domains


Selected Abstracts


Three-dimensional finite strain analysis in the high-grade part of the Sanbagawa Belt using deformed meta-conglomerate

ISLAND ARC, Issue 2 2002
Yoshinori Moriyama
Abstract Regional ductile deformation of the Sanbagawa belt is generally thought to be characterized by constrictional strain, based on strain analysis using deformed radiolarians in the low-grade regions. Similar strain analysis could not be carried out in the medium- to high-grade zones, because it is very difficult to identify individual radiolarians after strong recrystallization. However, discovery of the first known meta-conglomerate in the high-grade region of the Sanbagawa Belt allows quantitative 3-D strain to be estimated in this region. Using a development of the Rf-, method, an evaluation of appropriate errors for this estimate can be determined. The principal strain ratios and estimated errors are X/Y = 5.4,6.6 and Y/Z = 3.8,3.9 implying deformation in the flattening field and refuting the idea of uniform constrictional strain. Semi-quantitative markers of the shape of the strain ellipse throughout the high-grade regions suggest that the deformation of the Sanbagawa Belt is dominantly in the flattening field. The difference with the earlier results may be due to late-stage overprinting by upright folding of the main ductile fabric in the low-grade region of western Shikoku. [source]


Talc-phengite-albite assemblage in piemontite-quartz schist of the Sanbagawa metamorphic belt, central Shikoku, Japan

ISLAND ARC, Issue 1 2000
J. Izadyar
Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal -rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc,Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998), however, suggests that the Tlc,Phn stability field defined by these reactions is unrealistically limited around 580,600 °C at 11.6,12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+ -SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc,Phn assemblage. [source]


Progress of actinolite-forming reactions in mafic schists during retrograde metamorphism: an example from the Sanbagawa metamorphic belt in central Shikoku, Japan

JOURNAL OF METAMORPHIC GEOLOGY, Issue 5 2005
A. OKAMOTO
Abstract Hydration reactions are direct evidence of fluid,rock interaction during regional metamorphism. In this study, hydration reactions to produce retrograde actinolite in mafic schists are investigated to evaluate the controlling factors on the reaction progress. Mafic schists in the Sanbagawa belt contain amphibole coexisting with epidote, chlorite, plagioclase and quartz. Amphibole typically shows two types of compositional zoning from core to rim: barroisite , hornblende , actinolite in the high-grade zone, and winchite , actinolite in the low-grade zone. Both types indicate that amphibole grew during the exhumation stage of the metamorphic belt. Microstructures of amphibole zoning and mass-balance relations suggest that: (1) the actinolite-forming reactions proceeded at the expense of the preexisting amphibole; and (2) the breakdown reaction of hornblende consumed more H2O fluid than that of winchite, when one mole of preexisting amphibole was reacted. Reaction progress is indicated by the volume fraction of actinolite to total amphibole, Yact, with the following details: (1) reaction proceeded homogeneously in each mafic layer; (2) the extent of the hornblende breakdown reaction is commonly low (Yact < 0.5), but it increases drastically in the high-grade part of the garnet zone (Yact,>,0.7); and (3) the extent of the winchite breakdown reaction is commonly high (Yact,>,0.7). Many microcracks are observed within hornblende, and the extent of hornblende breakdown reaction is correlated with the size reduction of the hornblende core. Brittle fracturing of hornblende may have enhanced retrograde reaction progress by increasing of influx of H2O and the surface area of hornblende. In contrast to high-grade rocks, the winchite breakdown reaction is well advanced in the low-grade rocks, where reaction progress is not associated with brittle fracturing of winchite. The high extent of the reaction in the low-grade rocks may be due to small size of winchite before the reaction. [source]


Exhumation rates and age of metamorphism in the Sanbagawa belt: new constraints from zircon fission track analysis

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2004
S. Wallis
Abstract Zircon fission track dating and track length analysis in the high-grade part of the Asemigawa region of the Sanbagawa belt demonstrates a simple cooling history passing through the partial annealing zone at 63.2 ± 5.8 (2 ,) Ma. Combining this age with previous results of phengite and amphibole K,Ar and 40Ar/39Ar dating gives a cooling rate of between 6 and 13 °C Myr,1, which can be converted to a maximum exhumation rate of 0.7 mm year,1 using the known shape of the P,T path. This is an order of magnitude lower than the early part of the exhumation history. In contrast, zircon fission track analyses in the low-grade Oboke region show that this area has undergone a complex thermal history probably related to post-orogenic secondary reheating younger than c. 30 Ma. This event may correlate with the widespread igneous activity in south-west Japan around 15 Ma. The age of subduction-related metamorphism in the Oboke area is probably considerably older than the generally accepted range of 77,70 Ma. [source]