Home About us Contact | |||
High-grade Osteosarcoma (high-grade + osteosarcoma)
Selected AbstractsMechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell linesGENES, CHROMOSOMES AND CANCER, Issue 4 2009Claudia M. Hattinger Gene amplification and copy number changes play a pivotal role in malignant transformation and progression of human tumor cells by mediating the activation of genes and oncogenes, which are involved in many different cellular processes including development of drug resistance. Since doxorubicin (DX) and methotrexate (MTX) are the two most important drugs for high-grade osteosarcoma (OS) treatment, the aim of this study was to identify genes gained or amplified in six DX- and eight MTX-resistant variants of the human OS cell lines U-2OS and Saos-2, and to get insights into the mechanisms underlying the amplification processes. Comparative genomic hybridization techniques identified amplification of MDR1 in all six DX-resistant and of DHFR in three MTX-resistant U-2OS variants. In addition, progressive gain of MLL was detected in the four U-2OS variants with higher resistance levels either to DX or MTX, whereas gain of MYC was found in all Saos-2 MTX-resistant variants and the U-2OS variant with the highest resistance level to DX. Fluorescent in situ hybridization revealed that MDR1 was amplified in U-2OS and Saos-2/DX-resistant variants manifested as homogeneously staining regions and double minutes, respectively. In U-2OS/MTX-resistant variants, DHFR was amplified in homogeneously staining regions, and was coamplified with MLL in relation to the increase of resistance to MTX. Gene amplification was associated with gene overexpression, whereas gene gain resulted in up-regulated gene expression. These results indicate that resistance to DX and MTX in human OS cell lines is a multigenic process involving gene copy number and expression changes. © 2008 Wiley-Liss, Inc. [source] Molecular characterization of the response to chemotherapy in conventional osteosarcomas: Predictive value of HSD17B10 and IFITM2INTERNATIONAL JOURNAL OF CANCER, Issue 4 2009Sébastien Salas Abstract The therapy regimen of high-grade osteosarcoma includes chemotherapy followed by surgical resection and postoperative chemotherapy. The degree of necrosis following definitive surgery remains the only reliable prognostic factor and is used to guide the choice of postoperative chemotherapy. The aim of this study was to find molecular markers able to classify patients with an osteosarcoma as good or poor responders to chemotherapy before beginning treatment. Gene expression screening of 20 nonmetastatic high-grade osteosarcoma patients was performed using cDNA microarray. Expression of selected relevant genes was validated using QRT-PCR. Immunohistochemistry on tissue microarrays sections of 73 biopsies was performed to investigate protein expression. Fluorescent in situ hybridization was performed for RPL8 gene. We have found that HSD17B10 gene expression was up-regulated in poor responders and that immunohistochemistry expression of HSD17B10 on biopsy before treatment was correlatedto response to chemotherapy. Other results include correlationof IFITM2, IFITM3, and RPL8 gene expression to chemotherapy response. A statistical correlation was found between polysomy 8 or gain of RPL8 and good response to chemotherapy. These data suggest that HSD17B10, RPL8, IFITM2, and IFITM3 genes are involved in the response to the chemotherapy and that HSD17B10 may be a therapeutic target. RPL8 and IFITM2 may be useful in the assessment at diagnosis and for stratifying patients taking part in randomized trials. © 2009 UICC [source] Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with malignant bone tumors,PEDIATRIC BLOOD & CANCER, Issue 6 2001Gerold Holzer MD Abstract Background Vascular endothelial growth factor (VEGF) is recognized as an important stimulator of angiogenesis. Formation of new blood vessels by angiogenic factors occurs in many biological processes, both physiological and pathological, among others in growth of primary solid malignant tumors and metastasis. This implies that the inhibition of angiogenic factors like VEGF would result in a suppression of tumor growth and metastasis formation. The aim of the present study was to compare preoperative serum VEGF levels of patients having malignant bone tumors with healthy controls to identify serum VEGF levels as a tumor marker. Procedure Blood sera from patients with high-grade osteosarcoma (n,=,17), chondrosarcoma (n,=,4) and Ewing sarcoma (n,=,6) were taken at the time of diagnosis before biopsy and compared with sera from 129 healthy persons. To measure VEGF levels in serum, a commercially available ELISA was used (Quantikine Human VEGF Immunoassay; R&D Systems). Results The observed geometric mean VEGF levels and 95% confidence intervals are 232.0 pg ml,1 (168.9,318.5) for patients with high-grade osteosarcoma, 325.5 pg ml,1 (169.3,625.8) for patients with chondrosarcoma, 484.3 pg ml,1 (284.0,826.0) for patients with Ewing sarcoma, as compared to 216.2 pg ml,1 (192.8,242.5) for healthy individuals. Conclusions While the sample means for the three groups of sarcoma patients were higher than the respective mean for the healthy controls, only the mean for the group with Ewing sarcoma is statistically significantly higher than the mean for the healthy controls. Despite the significant difference, VEGF levels are not suitable as a marker for Ewing sarcoma. Med. Pediatr. Oncol. 36:601,604, 2001. © 2001 Wiley-Liss, Inc. [source] COPS3 amplification and clinical outcome in osteosarcomaCANCER, Issue 9 2007Taiqiang Yan MD Abstract BACKGROUND. Amplification of several genes that map to a region of chromosome 17p11.2, including COPS3, was observed in high-grade osteosarcoma. These genes were also shown to be overexpressed and may be involved in osteosarcoma tumorigenesis. COPS3 encodes a subunit of the COP9 signalosome implicated in the ubiquitination and ultimately degradation of the P53 tumor suppressor. To determine the relation between COPS3 amplification, P53 mutation, and patient outcome in osteosarcoma, tumors from a large cohort of patients with high-grade osteosarcoma and long-term clinical follow-up were examined. METHODS. Quantitative real-time polymerase chain reaction (PCR) was performed to detect copy number changes for COPS3, as well as additional genes (NCOR1, TOM1L2, and PMP22) from the 17p11.2 amplicon, in 155 osteosarcomas from a prospective collection of tumors with corresponding clinical data. Univariate and multivariate analyses were performed to assess differences in survival between groups. RESULTS. Amplification of COPS3, detected in 31% of the osteosarcomas, was strongly associated with large tumor size (P = .0009), but was not associated with age at diagnosis, site, sex, and tumor necrosis. COPS3 amplification was significantly correlated with a shorter time to metastasis with an estimated hazard ratio (HR) of 1.61 (95% confidence interval [CI], 1.02,2.55) in univariate analysis (log-rank test, P = .042). However, in an a priori multivariate Cox model including the other clinical parameters, the HR for COPS3 amplification decreased to 1.32 (95% CI, 0.82,2.13, P = .25), mainly due to the strong correlation with tumor size. COPS3 amplification and P53 mutation frequently occurred in the same tumors, suggesting that these are not mutually exclusive events in osteosarcoma. Although not statistically significant, patients whose tumors exhibited both molecular alterations tended to be more likely to develop metastasis compared with patients with either COPS3 amplification or P53 mutation alone. CONCLUSIONS. COPS3 is the likely target of the 17p11.2 amplicon. COPS3 may function as an oncogene in osteosarcoma, and an increased copy number may lead to an unfavorable prognosis. Cancer 2007. © 2007 American Cancer Society. [source] Genetic imbalances revealed by comparative genomic hybridization in osteosarcomasINTERNATIONAL JOURNAL OF CANCER, Issue 4 2002Toshifumi Ozaki Abstract Osteosarcomas are the most frequent bone sarcomas. The molecular chromosomal aberrations in osteosarcomas were analyzed by comparative genomic hybridization (CGH). We studied 47 frozen tumors (41 primary samples, 6 relapses) in osteosarcoma patients registered in the Cooperative Osteosarcoma Study (COSS) protocol. Genomic imbalances were detected in 40 of 41 primary tumors and 6 of 6 relapsed tumors. Gains were more frequent than losses (ratio of 1.3:1). The median number of changes was 16 and 12 in primary and relapsed osteosarcomas, respectively. The median number of aberrations in primary high-grade osteosarcomas (17.0) was significantly higher than in low- or intermediate-grade osteosarcoma subtypes (3.0) (p = 0.038). The most frequent gains included 8q, 1p21-p31 and 1q21-q24, and the most frequent losses were 10q, 5q and 13q. High-level gains were observed on 8q23-q24, 17p13 and 1q21-q24. A gain of 19p (p < 0.001) or loss of 9p (p = 0.027) was more frequent in poor responders than in good responders. Univariate analysis revealed that patients with primary metastases (p = 0.002), poor histologic responses (p = 0.005), high-level gains of 19p (p = 0.012) or losses of 13q14 (p = 0.042) had significantly lower event-free survival (EFS), whereas patients with a loss of 5q (p = 0.007) or a loss of 10q21-22 (p = 0.017) had significantly higher EFS than patients without these aberrations. Multivariate analysis demonstrated that primary metastasis, loss of 13q14 and loss of 5q were independent prognostic factors. The findings of our study seem to be useful for evaluating the prognosis of patients and may finally lead to treatment strategies based on genetic background of osteosarcoma. © 2002 Wiley-Liss, Inc. [source] |