Home About us Contact | |||
High-frequency MSI (high-frequency + msi)
Selected AbstractsDensely methylated MLH1 promoter correlates with decreased mRNA expression in sporadic colorectal cancersGENES, CHROMOSOMES AND CANCER, Issue 1 2002Taiji Furukawa It has been reported that MLH1 is silenced by promoter methylation, and that this phenomenon is associated with microsatellite instability (MSI) in sporadic colorectal cancer (CRC). To clarify the significance of MLH1 promoter methylation in sporadic CRC, we examined the correlation between methylation status over the entire promoter region and mRNA expression in cases showing high-frequency MSI (MSI-H). MLH1 promoter methylation was analyzed using the bisulfite modification sequencing in 48 MSI-H cases. We also screened for somatic mutation, loss of heterozygosity, and immunohistochemical staining of MLH1. The results showed that methylation patterns could be subdivided into three types: methylation of more than 80% of the CpG sites analyzed (type 1 methylation), methylation of less than 20% (type 2 methylation), and methylation mainly in the region 500 to 921 bases upstream from the translation start site (type 3 methylation). Of the three types, only type 1 methylation correlated with decreased mRNA expression. The frequency of type 1 methylation was significantly higher in cases involving the proximal colon (66.7%, 18/27) compared to that of the distal colon and rectum (23.8%, 5/21, P = 0.004). Immunohistochemical staining of MSI-H cases showed that decreased MLH1 was found in 77.1% (37/48). Of the cases with decreased MLH1, type 1 methylation was present in 59.5% (22/37). Overall, our data suggested that the type 1 methylation pattern may affect MLH1 mRNA expression, such that the majority of MSI-H cases in sporadic CRC, especially proximal colon cancer, exhibited type 1 methylation. © 2002 Wiley-Liss, Inc. [source] p53 expression, K- ras gene mutation and microsatellite instability in gastric B-cell lymphomasJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 9 2003TORU HIYAMA Abstract Background and Aims:, Genetic mechanisms involved in the development of gastric B-cell lymphomas remain unclear. The aim of the present study was to clarify the roles of mutations of the p53 and K- ras genes, and microsatellite instability (MSI) in the development of gastric B-cell lymphomas. Methods:, We investigated p53 immunoreactivity, mutations of the K- ras gene, and MSI in 27 gastric marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue type (MZBCL) and 24 diffuse large B-cell lymphomas (DLBCL). p53 immunoreactivity was examined using a monoclonal antibody, DO-7. Mutation of the K- ras gene was detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. MSI was examined at five microsatellite loci with a microsatellite assay. Cases were classified as having high-frequency MSI (MSI-H) (, 2 loci showing instability), low-frequency MSI (MSI-L) (only one locus showing instability), or as microsatellite stable. Results:, p53 immunoreactivity was detected in 1 of 16 (6%) MZBCL and 8 of 19 (42%) DLBCL. Frequency of p53 immunoreactivity in DLBCL was significantly higher than that in MZBCL (P = 0.018). MSI-H was detected only in 1 of 20 (5%) DLBCL. None of the cases examined showed mutation of the K- ras gene. Conclusions:, These data suggest that mutations of the p53 gene may play an important role in the development of gastric DLBCL, and that mutations of the K- ras gene and MSI may be involved in little part of the development of gastric B-cell lymphomas. [source] Microsatellite instability in esophageal squamous cell carcinoma is not associated with hMLH1 promoter hypermethylationPATHOLOGY INTERNATIONAL, Issue 5 2003Masahiro Hayashi To test whether a subset of esophageal squamous cell carcinomas (SCC) develop through a deficiency in DNA mismatch repair, we examined microsatellite instability (MSI) using 11 microsatellite markers including BAT-26, hMLH1 protein expression by immunohistochemistry, and methylation status of the hMLH1 promoter by methylation-specific polymerase chain reaction (MSP). p53 mutations were also investigated. Microsatellite instability at one or more loci was observed in 40% (12/30) of esophageal SCC tumor samples, although only one of these tumors was categorized as high-frequency MSI (MSI-H) and none showed BAT-26 instability. While immunohistochemistry revealed decreased hMLH1 protein expression in 27% (8/30) of the tumors, hMLH1 promoter hypermethylation was not observed. Absence of hMLH1 protein expression was relatively common in well-differentiated (keratinizing-type) esophageal SCC, but was not associated with hMLH1 promoter hypermethylation. p53 mutation was detected in 37% (11/30) and loss of heterozygosity (LOH) in 90% (27/30) of esophageal SCC samples. Our results suggested that most esophageal SCC develop through defects in tumor suppressor genes (i.e. the suppressor pathway), and that MSI in esophageal SCC probably represent random replication errors rather than being associated with DNA mismatch repair deficiency. [source] Low frequency of microsatellite instability in hereditary prostate cancerBJU INTERNATIONAL, Issue 4 2001A.-K. Åhman Objective To investigate whether there is widespread microsatellite instability (MSI) in families with hereditary prostate cancer (HPC). Patients and methods Eighty-four prostate tumours from 80 Swedish men in 35 families with HPC were screened for genetic instability at microsatellite marker loci BAT-25, BAT-26, BAT-34C4, D2S123 and D17S250. Results MSI was detected in only five individuals from different families. Three tumours (4%) were unstable at more than two MSI loci and hence classified as high-frequency MSI (MSI-H) according to a previous definition. Interestingly, two of the MSI-H tumours were from patients in families with both HPC and familial colon cancer. Conclusions Widespread MSI is a rare event in hereditary prostate cancer, indicating that defective DNA mismatch repair is not an important element in the genesis of HPC. [source] |