Home About us Contact | |||
High-field MRI (high-field + mri)
Selected AbstractsIn Vivo Determination of Bone Structure in Postmenopausal Women: A Comparison of HR-pQCT and High-Field MR Imaging,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2008Galateia J Kazakia PhD Abstract Bone structural measures obtained by two noninvasive imaging tools,3T MRI and HR-pQCT,were compared. Significant but moderate correlations and 2- to 4-fold discrepancies in parameter values were detected, suggesting that differences in acquisition and analysis must be considered when interpreting data from these imaging modalities. Introduction: High-field MRI and high resolution (HR)-pQCT are currently being used in longitudinal bone structure studies. Substantial differences in acquisition and analysis between these modalities may influence the quantitative data produced and could potentially influence clinical decisions based on their results. Our goal was to compare trabecular and cortical bone structural measures obtained in vivo by 3T MRI and HR-pQCT. Materials and Methods: Postmenopausal osteopenic women (n = 52) were recruited for this study. HR-pQCT imaging of the radius and tibia was performed using the XtremeCT scanner, with a voxel size of 82 × 82 × 82 ,m3. MR imaging was performed on a 3T Signa scanner using SSFP imaging sequences, with a pixel size of 156 × 156 ,m2 and slice thickness of 500 ,m. Structure parameters were calculated using standard HR-pQCT and MRI analysis techniques. Relationships between measures derived from HR-pQCT, MRI, and DXA were studied. Results: Significant correlations between HR-pQCT and MRI parameters were found (p < 0.0001) and were strongest for Tb.N (r2 = 0.52), Ct.Th (r2 = 0.59), and site-specific Tb.Sp (r2 = 0.54,0.60). MRI and HR-pQCT provided statistically different values of structure parameters (p < 0.0001), with BV/TV and Tb.Th exhibiting the largest discrepancies (MR/HR-pQCT = 3,4). Although differences in the Tb.N values were statistically significant, the mean differences were on the order of our reproducibility measurements. Systematic differences between MRI and HR-pQCT analysis procedures leading to discrepancies in cortical thickness values were observed, with MRI values consistently higher. Minimal correlations were found between MRI or HR-pQCT parameters and DXA BMD or T-score, except between HR-pQCT measures at the radius and the ultradistal radius T-scores, where moderate correlations were found (r2 = 0.19,0.58). Conclusions: This study provides unique insight into two emerging noninvasive tools for bone structure evaluation. Our findings highlight the significant influence of analysis technique on results of in vivo assessment and underscore the importance of accounting for these differences when interpreting results from these modalities. [source] Dynamic range expansion of receiver by using optimized gain adjustment for high-field MRICONCEPTS IN MAGNETIC RESONANCE, Issue 4 2010C.H. Oh Abstract In high-field magnetic resonance imaging (MRI) system, the signal-to-noise ratio of MR signal is so high that the receiver frequently cannot cover the full dynamic range of the MR signal. Although this problem can be overcome by using a compander (compressor and expander) composed of logarithmic amplifiers and a ROM table to retrieve the nonlinearity of the logarithmic amplifiers or by simply increasing the number of bits of analog-to-digital converter, the methods can be costly and complex or even impossible for most commercial systems. In addition, the spectrometer has to be specifically designed to operate in those modes. In this article, we developed a simple dynamic range improvement method using a receiver with optimized variable gain control in which function can be implemented without any hardware modification to the spectrometer, if the spectrometer can do gain control during a scan. Simulations as well as experiments for the brain and resolution phantom have been performed, and the results demonstrate the utility of the proposed method. © 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 243,254, 2010. [source] CMR 2005: 9.02: Detection of single cells by high-field MRICONTRAST MEDIA & MOLECULAR IMAGING, Issue 2 2006F. Gazeau [source] RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRIMAGNETIC RESONANCE IN MEDICINE, Issue 2 2010Stephan Orzada Abstract As the field strength and, therefore, the operational frequency in MRI is increased, the wavelength approaches the size of the human head/body, resulting in wave effects, which cause signal decreases and dropouts. Several multichannel approaches have been proposed to try to tackle these problems, including RF shimming, where each element in an array is driven by its own amplifier and modulated with a certain (constant) amplitude and phase relative to the other elements, and Transmit SENSE, where spatially tailored RF pulses are used. In this article, a relatively inexpensive and easy to use imaging scheme for 7 Tesla imaging is proposed to mitigate signal voids due to B field inhomogeneity. Two time-interleaved images are acquired using a different excitation mode for each. By forming virtual receive elements, both images are reconstructed together using GRAPPA to achieve a more homogeneous image, with only small SNR and SAR penalty in head and body imaging at 7 Tesla. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. [source] Four-dimensional spectral-spatial RF pulses for simultaneous correction of B1+ inhomogeneity and susceptibility artifacts in T2*-weighted MRIMAGNETIC RESONANCE IN MEDICINE, Issue 1 2010Cungeng Yang Abstract Susceptibility artifacts and excitation radiofrequency field B1+ inhomogeneity are major limitations in high-field MRI. Parallel transmission methods are promising for reducing artifacts in high-field applications. In particular, three-dimensional RF pulses have been shown to be useful for reducing B1+ inhomogeneity using multiple transmitters due to their ability to spatially shape the slice profile. Recently, two-dimensional spectral-spatial pulses have been demonstrated to be effective for reducing the signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. We present the use of four-dimensional spectral-spatial RF pulses for simultaneous B1+ and through-plane signal loss susceptibility artifact compensation. The method is demonstrated with simulations and in T2*-weighted human brain images at 3 T, using a four-channel parallel transmission system. Parallel transmission was used to reduce the in-plane excitation resolution to improve the slice-selection resolution between two different pulse designs. Both pulses were observed to improve B1+ homogeneity and reduce the signal loss artifact in multiple slice locations and several human volunteers. Magn Reson Med 64:1,8, 2010. © 2010 Wiley-Liss, Inc. [source] The value of conventional high-field MRI in MS in the light of the McDonald criteria: a literature reviewACTA NEUROLOGICA SCANDINAVICA, Issue 3 2010L. S. Lunde Larsen Lunde Larsen LS, Larsson HBW, Frederiksen JL. The value of conventional high-field MRI in MS in the light of the McDonald criteria: a literature review. Acta Neurol Scand: 122: 149,158. © 2010 John Wiley & Sons A/S. The diagnosis of MS is based on the revised McDonald criteria and is multidisciplinary. Both clinical and paraclinical measures are included. High-field magnetic resonance imaging (MRI) is becoming increasingly available and it is therefore necessary to clarify possible advantages of high-field MRI in MS. The aim of this paper was to review MRI studies in MS where a direct comparison of MRI at high field with MRI at 1,1.5 tesla (T) had been performed. The studies evaluated were found by searching Pubmed with relevant terms including MeSH terms. The reviewed studies all found the conspicuity of lesions to be better at high field. Of the seven studies, six found more and bigger lesions at high-field MRI. In the present paper, the relevant MRI sequences are evaluated in detail. The detection of more lesions at high-field strength did not seem to lead to earlier diagnosis of clinically definite multiple sclerosis. Further larger studies of patients with clinically isolated syndromes are needed to settle the question of a diagnostic consequence of high-field imaging in MS. We suggest that the next revision of the McDonald diagnostic criteria include a recommendation of field strength. [source] Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenitaACTA NEUROLOGICA SCANDINAVICA, Issue 2 2010C. Kornblum Kornblum C, Lutterbey GG, Czermin B, Reimann J, von Kleist-Retzow J-C, Jurkat-Rott K, Wattjes MP. Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand: 2010: 121: 131,135. © 2009 The Authors Journal compilation © 2009 Blackwell Munksgaard. Background,,, Muscle magnetic resonance imaging (MRI) is the most sensitive method in the detection of dystrophic and non-dystrophic abnormalities within striated muscles. We hypothesized that in severe myotonia congenita type Becker muscle stiffness, prolonged transient weakness and muscle hypertrophy might finally result in morphologic skeletal muscle alterations reflected by MRI signal changes. Aim of the study,,, To assess dystrophic and/or non-dystrophic alterations such as fatty or connective tissue replacement and muscle edema in patients with severe recessive myotonia congenita. Methods,,, We studied three seriously affected patients with myotonia congenita type Becker using multisequence whole-body high-field MRI. All patients had molecular genetic testing of the muscle chloride channel gene (CLCN1). Results,,, Molecular genetic analyses demonstrated recessive CLCN1 mutations in all patients. Two related patients were compound heterozygous for two novel CLCN1 mutations, Q160H and L657P. None of the patients showed skeletal muscle signal changes indicative of fatty muscle degeneration or edema. Two patients showed muscle bulk hypertrophy of thighs and calves in line with the clinical appearance. Conclusions,,, We conclude that (i) chloride channel dysfunction alone does not result in skeletal muscle morphologic changes even in advanced stages of myotonia congenita, and (ii) MRI skeletal muscle alterations in myotonic dystrophy must be clear consequences of the dystrophic disease process. [source] Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging studyACTA NEUROLOGICA SCANDINAVICA, Issue 2 2009K. Kesper Objectives and methods,,, Mutations in the gene encoding dysferlin cause limb girdle muscular dystrophy type 2B (LGMD2B), distal Miyoshi myopathy (MM), and a rare form of distal anterior compartment myopathy. To study the correlations between clinical manifestations and muscle imaging changes we conducted a 3.0-T magnetic resonance imaging (MRI) study in six German patients with primary dysferlinopathies defined by absence of dysferlin expression in muscle (MM, n = 3; LGMD2B, n = 2; hyperCKemia without clinical symptoms, n = 1). Results,,, Patients with manifest myopathy had widespread muscular pathology. In analogy to previous imaging studies, we confirmed an involvement of the anterior and posterior thigh compartments and a predominant involvement of posterior lower legs. However, our whole-body MRI study further provided evidence of signal alterations in the glutei, erector spinae and shoulder girdle muscles. Correlation of clinical findings with imaging demonstrated the potential of MRI to detect subclinical muscle pathology. Conclusions,,, Whole-body 3.0-T MRI is a non-invasive method to demonstrate various degrees of skeletal muscle alterations and disease progression in muscular dystrophies. Furthermore, whole-body high-field MRI may serve as a helpful diagnostic tool in differentiating primary dysferlinopathies from other forms of LGMD and distal myopathies. [source] |