Highest Stresses (highest + stress)

Distribution by Scientific Domains


Selected Abstracts


Load transfer characteristics of unilateral distal extension removable partial dentures with polyacetal resin supporting components

AUSTRALIAN DENTAL JOURNAL, Issue 1 2009
T Jiao
Abstract Background:, To photoelastically examine load transfer by unilateral distal extension removable partial dentures with supporting and retentive components made of the lower stiffness polyacetal resins. Methods:, A mandibular photoelastic model, with edentulous space distal to the right second premolar and missing the left first molar, was constructed to determine the load transmission characteristics of a unilateral distal extension base removable partial denture. Individual simulants were used for tooth structure, periodontal ligament, and alveolar bone. Three designs were fabricated: a major connector and clasps made from polyacetal resin, a metal framework as the major connector with polyacetal resin clasp and denture base, and a traditional metal framework I-bar removable partial denture. Simulated posterior bilateral and unilateral occlusal loads were applied to the removable partial dentures. Results:, Under bilateral and left side unilateral loading, the highest stress was observed adjacent to the left side posterior teeth with the polyacetal removable partial denture. The lowest stress was seen with the traditional metal framework. Unilateral loads on the right edentulous region produced similar distributed stress under the denture base with all three designs but a somewhat higher intensity with the polyacetal framework. Conclusions:, The polyacetal resin removable partial denture concentrated the highest stresses to the abutment and the bone. The traditional metal framework I-bar removable partial denture most equitably distributed force. The hybrid design that combined a metal framework and polyacetal clasp and denture base may be a viable alternative when aesthetics are of primary concern. [source]


Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis

CLINICAL ORAL IMPLANTS RESEARCH, Issue 4 2004
Eriko Kitamura
Abstract Objectives: Although bone loss around implants is reported as a complication when it progresses uncontrolled, resorption does not always lead to implant loss, but may be the result of biomechanical adaptation to stress. To verify this hypothesis, a three-dimensional finite element analysis was performed and the influence of marginal bone resorption amount and shape on stress in the bone and implant was investigated. Material and methods: A total of nine bone models with an implant were created: a non-resorption (Base) model and eight variations, in which three different resorption depths were combined with pure vertical or conical (vertical,horizontal) resorption. Axial and buccolingual forces were applied independently to the occlusal node at the center of the superstructure. Results: Regardless of load direction, bone stresses were higher in the pure vertical resorption (A) models than in the Base model, and increased with resorption depth. However, cortical bone stress was much lower in the conical resorption models than in both the Base and A models of the same resorption depth. An opposite tendency was observed in the cancellous bone under buccolingual load. Under buccolingual load, highest stress in the implant increased linearly with the resorption depth for all the models and its location approached the void existing below the abutment screw. Conclusions: The results of this analysis suggest that a certain amount of conical resorption may be the result of biomechanical adaptation of bone to stress. However, as bone resorption progresses, the increasing stresses in the cancellous bone and implant under lateral load may result in implant failure. Résumé Bien que la perte osseuse autour des implants soit considérée comme une complication quand elle progresse de manière incontrôlée, la résoption ne se termine pas toujours par la perte de l'implant, mais peut être le résultat de l'adaptation biomécanique au stress. Pour vérifier cette hypothèse, une analyse d'éléments finis en trois dimensions a été effectuée et l'influence de l'aspect et de la quantité de résorption osseuse marginale au stress dans l'os et l'implant a été analysée. Neuf modèles osseux avec un implant ont été créés : un modèle (Base) sans résorption et huit variations dans lesquelles trois profondeurs de résorption différentes ont été combinées avec des résorptions verticales ou coniques (verticale-horizontale). Des forces axiales et vestibulo-linguales ont été appliquées de manière indépendante en occlusal au centre de la superstructure. Quelle que soit la direction de la charge, les stress osseux étaient plus importants dans la résorption verticale pure (A) que dans le modèle de base et augmentaient avec la profondeur de résorption. Cependant, le stress osseux cortical était beaucoup plus faible dans les modèles à résorption conique que dans les modèles Base et A de même profondeur de résorption. Une tendance opposée était observée dans l'os spongieux sous charge vestibulo-linguale. Sous charge vestibulo-linguale, le stress le plus important dans l'implant augmentait linéairement avec la profondeur de résorption pour tous les modèles et sa localisation approchait l'espace existant en-dessous du pilier. Les résultats de cette analyse suggèrent qu'une certaine quantité de résorption conique pourrait être le résultat d'une adaptation biomécanique au stress osseux. Cependant, quand la résorption osseuse progresse les stress s'amplifiant dans l'os spongieux et au niveau de l'implant sous une force latérale peuvent résulter en un échec implantaire. Zusammenfassung Ziel: Auch wenn ein Knochenverlust um Implantate, der unkontrolliert fortschreitet, als Komplikation beschrieben wird, führen solche Resorptionen nicht gezwungenermassen zu einem Implantatverlust. Sie könnten aber Ausdruck einer biomechanischen Adaptation auf die Belastungen sein. Um diese Hypothese zu überprüfen, führte man eine dreidimensionale "Finite-Element"-Analyse durch. Man untersuchte die Zusammenhänge von Ausmass und Form der marginalen Knochenresorption und den entstehenden Kräften im Knochen und Implantat. Material und Methode: Die Arbeitsgrundlage waren 9 Modelle mit je einem Implantat: eines diente als Kontrolle (ohne Resorptionserscheinungen), die anderen acht zeigten drei verschiedene Resortionstiefen in Kombination mit rein vertikalen oder konischen (vertiko-horizontal) Defektformen. Dann liess man, unabhängig von der Okklusionsgestaltung, axiale und buccolinguale Kräfte auf die Mitte der Suprastruktur auftreffen. Resultate: Unabhängig von der Belastungsrichtung war die Knochenbelastung bei den rein vertikalen Resorptionsmodellen (A) grösser als beim Kontrollmodell und sie nahmen mit der Tiefe der Resorption zu. Die Belastung im kortikalen Knochen war aber in den Modellen mit konischen Resorptionen viel geringer als beim Kontrollmodell und den A-Modellen mit denselben Resorptionstiefen. Eine genau umgekehrte Tendenz konnte man im spongiösen Knochen unter buccolingualer Belastung feststellen.Bei einer buccolingualen Belastung nahm die Belastungsspitze beim Implantat bei allen Modellen linear mit der Resorptionstiefe zu und der Ort dieser Belastungsspitze lag im Bereich des Leerraumes genau unterhalb der Schraube des Sekundärteils. Zusammenfassung: Die Resultate dieser Analyse lassen vermuten, dass die konische Resorption bis zu einem gewissen Ausmass das Resultat einer biomechanischen Adaptation auf die Belastung des Knochens ist. Wenn aber die Knochenresorption fortschreitet, können die zunehmenden Belastungen im spongiösen Knochen und im Implantat bei einer lateralen Belastung zum Implantatmisserfolg führen. Resumen Objetivos: Aunque la pérdida de hueso alrededor de los implantes se informa como una complicación cuando progresa incontroladamente, la reabsorción no siempre lleva a la pérdida del implante, pero puede ser el resultado de la adaptación biomecánica al estrés. Para verificar esta hipótesis, se llevó a cabo un análisis tridimensional de elementos finitos y se investigó la influencia de la cantidad de reabsorción de hueso marginal y la forma en el estrés en el hueso y el implante. Material y métodos: Se crearon un total de 9 modelos de hueso con un implante: Un modelo sin reabsorción (Base) y 8 variaciones, el las que se combinaron tres diferentes profundidades de reabsorción con reabsorciones verticales o cónicas puras (vertical,horizontal). Se aplicaron fuerzas axiales y bucolinguales independientemente al nodo oclusal en el centro de la superestructura. Resultados: A pesar de la dirección de la carga, los estreses óseos fueron más altos en los modelos de reabsorción vertical pura (A) que en los modelos Base y se incrementaron con la profundidad de reabsorción. De todos modos, el estrés cortical fue mucho menor en los modelos de reabsorción cónica que en los modelos Base y A con la misma profundidad de reabsorción. Se observó una tendencia opuesta en el hueso esponjoso bajo carga bucolingual. Bajo carga bucolingual, el estrés mas alto en el implante se incrementó linealmente con la profundidad de reabsorción para todos los modelos y su localización se aproximó al espacio existente bajo el tornillo del pilar. Conclusión: Los resultados de este análisis sugieren que cierta cantidad de reabsorción cónica puede resultar de la adaptación biomecánica del hueso al estrés. De todos modos, al progresar la reabsorción ósea, los estrés crecientes en el hueso esponjoso y en el implante bajo carga lateral puede resultar en un fracaso del implante. [source]


Effect of Compromised Cortical Bone on Implant Load Distribution

JOURNAL OF PROSTHODONTICS, Issue 8 2008
vanç Akça DDS
Abstract Purpose: To investigate photoelastically the difference in load distribution of dental implants with different implant neck designs in intact and compromised bone. Materials and Methods: Composite photoelastic models were fabricated using two different resins to simulate trabecular bone and a 1-mm thick layer of cortical bone. The following parallel-sided, threaded implants were centrally located in individual models representing intact and compromised cortical bone: Straumann (4.1-mm diameter × 12-mm length), AstraTech (4.0-mm diameter × 13-mm length), and 3i (3.75-mm diameter × 13-mm length). The compromised cortical bone condition was simulated by contaminating a 1-mm neck portion with Vaseline to impair the implant,resin interface. Vertical and oblique static loads were applied on the abutments, and the resulting stresses were monitored photoelastically and recorded photograhphically. Results: For the fully intact condition, the highest stresses were observed around the crest and apical region for all implant designs under vertical and inclined loads. There were no appreciable differences in magnitude or distribution between implant types. With compromised cortical bone, for all designs and load directions, higher stresses in the supporting structures were observed. Increased stresses were noted especially at the cortical bone,trabecular bone interface. Somewhat lower stress levels were observed with the 3i implant. Conclusions: The condition of implant,cortical bone contact has considerable influence on stress distribution. A compromised cortical bone condition caused higher level stresses for all implant designs tested. [source]


Influence of Attachment Systems on Load Transfer of an Implant-Assisted Maxillary Overdenture

JOURNAL OF PROSTHODONTICS, Issue 4 2004
Mete I. Fanuscu DDS
Purpose: This photoelastic study compared the load transfer characteristics of 2 retention mechanisms in an implant-assisted overdenture prosthesis. Materials and Methods: Four implants were incorporated into a photoelastic model of a moderately resorbed edentulous human maxilla. Two retention mechanisms were studied by changing components on the same model and the palateless overdenture. The retention mechanisms studied were bar splint with anterior clip and distal resilient attachments, and solitary ball/O-ring attachments. Loads, ranging from 1.4 to 14.4 kg, were applied to the palatal incline of central incisors and buccal incline of premolars with and without balancing contacts. Stresses developed around all the implants under each loading condition were photographed in the field of a circular polariscope. Results: With both retention mechanisms, protrusive and laterotrusive loads without balancing contacts caused instability of the overdenture, producing minimal stress around the implants in the supporting structure. High intensity stresses indicating intrusion of the posterior implants were noted when the bar/distal resilient attachment overdenture had balancing contacts for protrusive and laterotrusive loads. The posterior implants of ball/O-ring attachment overdenture exhibited high intensity stresses indicating not only intrusion, but also bending, when the occlusion was balanced. Conclusions: Balanced occlusion was required in both retention mechanisms for stability of the implant-assisted overdenture when clinically acceptable loads were applied. The protrusive and laterotrusive loads were not distributed equitably in either mechanism, since highest stresses occurred at the posterior implants. [source]


Load transfer characteristics of unilateral distal extension removable partial dentures with polyacetal resin supporting components

AUSTRALIAN DENTAL JOURNAL, Issue 1 2009
T Jiao
Abstract Background:, To photoelastically examine load transfer by unilateral distal extension removable partial dentures with supporting and retentive components made of the lower stiffness polyacetal resins. Methods:, A mandibular photoelastic model, with edentulous space distal to the right second premolar and missing the left first molar, was constructed to determine the load transmission characteristics of a unilateral distal extension base removable partial denture. Individual simulants were used for tooth structure, periodontal ligament, and alveolar bone. Three designs were fabricated: a major connector and clasps made from polyacetal resin, a metal framework as the major connector with polyacetal resin clasp and denture base, and a traditional metal framework I-bar removable partial denture. Simulated posterior bilateral and unilateral occlusal loads were applied to the removable partial dentures. Results:, Under bilateral and left side unilateral loading, the highest stress was observed adjacent to the left side posterior teeth with the polyacetal removable partial denture. The lowest stress was seen with the traditional metal framework. Unilateral loads on the right edentulous region produced similar distributed stress under the denture base with all three designs but a somewhat higher intensity with the polyacetal framework. Conclusions:, The polyacetal resin removable partial denture concentrated the highest stresses to the abutment and the bone. The traditional metal framework I-bar removable partial denture most equitably distributed force. The hybrid design that combined a metal framework and polyacetal clasp and denture base may be a viable alternative when aesthetics are of primary concern. [source]