Home About us Contact | |||
Highest Elevations (highest + elevation)
Selected AbstractsPatterns in diversity of anurans along an elevational gradient in the Western Ghats, South IndiaJOURNAL OF BIOGEOGRAPHY, Issue 5 2007Rohit Naniwadekar Abstract Aim, To examine patterns in anuran species richness along an elevation gradient and identify factors that govern anuran species richness on a tropical elevational gradient. Location, Sampling for anurans was carried out in Kalakad Mundanthurai Tiger Reserve (KMTR) in the southern Western Ghats, India. Methods, Night-time sampling for anuran species richness was carried out from 20 November 2004 to 20 April 2005, during the north-east monsoon and dry seasons, using transects (50 × 2 m) and visual encounter surveys along the streams. The entire gradient was classified into thirteen 100-m elevation zones. Sampling at the alpha (single drainage basin) level was carried out in the Chinnapul River drainage basin (40,1260 m a.s.l.) and at the gamma (landscape) level in four drainage basins. Additionally, published records were used to arrive at an empirical species richness (S) for the entire landscape. Mid-Domain Null software was used to test for the possible influence of geometric constraints on anuran species at both the alpha and gamma levels. The influence of area under each elevation zone on empirical S was tested. The pattern in anuran species richness along the elevational gradient was investigated using: (1) species boundaries in each elevation zone and their habitat correlates, (2) abiotic factors as predictor variables, (3) mean snout vent lengths of anurans, and (4) correlation between the matrices of distance in the elevation zones based on microhabitat parameters and species composition. Cluster analysis on species presence,absence in the elevation zones was used to categorize the entire gradient into high, middle and low elevations. In these three elevation categories, pattern in composition of species was examined for endemism in Western Ghats,Sri Lanka biodiversity hotspot, uniqueness to an elevation zone, adaptations of adults and modes of breeding. Results, Species richness at the alpha level increased linearly with elevation, while at the gamma level there were three peaks. Maximum species richness was observed at the highest elevation (1200 m) at both the alpha and the gamma levels. The observed patterns differed significantly from mid-domain null predictions. The multi-modal pattern in species richness was a consequence of overlapping species range boundaries. Soil temperature was the best single measure in explaining the majority of variation in species richness at the alpha level (r2 = 0.846, P < 0.01). However, soil moisture was the best predictor when both the alpha and the gamma sites were pooled (r2 = 0.774, P < 0.01). Anuran body size decreased with an increase in elevation. The highest proportions of endemic and unique species were found at high elevations (> 700 m). The proportion of arboreal anurans increased from low to high elevation. Anurans exhibiting direct development were predominantly found at high elevations. Main conclusions, Geometric constraints did not influence anuran species richness along the elevational gradient. Overlapping range boundaries influenced species richness at the gamma level. Abiotic factors such as soil temperature and moisture influenced anuran species richness in the mountain range. The ,Massenerhebung effect' could be responsible for range restriction and endemism of anurans, differences in guilds and mode of reproduction. These findings highlight the importance of cloud forests for endemic anurans. [source] Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanizationJOURNAL OF BIOGEOGRAPHY, Issue 2 2004Pei-Fen Lee Abstract Aim, To examine the richness of breeding bird species in relation to elevation, primary productivity and urbanization. Location, The island of Taiwan (120°,122° E, 22°,25° N). Methods, We arranged bird species richness (BSR) data from 288 bird censuses undertaken in Taiwan into a 2 × 2 km quadrat system and calculated average values of elevation, primary productivity [surrogated by normalized difference vegetation index (NDVI)], and urbanization (surrogated by road density and percentage of built area) for each 2 × 2 km quadrat. Results, Bird species richness showed a hump-shaped relationship with elevation. It increased with elevation from sea level (10,64 species per 2 × 2 km quadrat), peaked around 2000 m (43,76 species), and then decreased with elevation towards its minimum at the highest elevation. Road density and percentage of built area decreased with elevation, and NDVI showed a hump-shaped relationship with elevation and inverse relationships with road density and percentage of built area. BSR increased with NDVI and decreased with road density and percentage of built area. Linear and cubic terms of elevation together explained 31.3% of the variance in BSR, and road density explained additional 3.4%. The explanatory power of NDVI on BSR was insignificant after the effects of elevation and road density had been justified. Main conclusions, We argue that urbanization plays an important role in the BSR of Taiwan. Urbanization might indirectly decrease BSR through decreasing primary productivity and therefore change the hypothetical inverse relationship between BSR and elevation into a hump-shaped relationship. We also propose a time hypothesis that the biotic communities in the mid-elevation zone of Taiwan had relatively longer periods of existence during the Pleistocene glacial cycles, which might be one underlying process of the observed hump-shaped relationship between species diversity and elevation. [source] GDNF Expression in Terminal Schwann Cells Associated With the Periodontal Ruffini Endings of the Rat Incisors During Nerve RegenerationTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2009Megumi Ohishi Abstract The terminal Schwann cells (TSCs) which play crucial roles in regeneration of the periodontal Ruffini endings (RE) exhibit immunoreaction for glial cell line-derived neurotrophic factor (GDNF). However, no information is available regarding the role of GDNF in the periodontal RE during nerve regeneration. This study was undertaken to examine the changes in GDNF expression in the rat periodontal RE following transection of the inferior alveolar nerve (IAN) using immunohistochemistry for GDNF and S-100 protein, a marker for the TSCs. We additionally investigated the changes in expression of GDNF in the trigeminal ganglion (TG) at protein and mRNA levels. A transection to IAN induced a disappearance of the TSCs from the alveolus-related part (ARP), followed by a migration of spindle-shaped cells with S-100 but without GDNF immunoreactions into the tooth-related part (TRP) by postoperative (PO) week 2. At PO week 2, GDNF immunoreacted cellular elements increased in number in the ARP although the spindle-shaped cells without GDNF reaction remained in the TRP. After PO week 4, many GDNF-positive TSCs appeared in the ARP though the spindle-shaped cells vanished from the TRP. A real time RT-PCR analysis demonstrated the highest elevation of GDNF mRNA in the TG at PO week 2. These findings suggested the involvement of this molecule in the maturation and maintenance of the periodontal RE during regeneration. Taken together with our previous and current studies, it appears that the regeneration of the periodontal RE is controlled by multiple neurotrophins in a stage-specific manner. Anat Rec, 2009. © 2009 Wiley-Liss, Inc. [source] Migration, Diet, or Molt?BIOTROPICA, Issue 4 2010Interpreting Stable-Hydrogen Isotope Values in Neotropical Bats ABSTRACT Migratory behavior in bats is poorly described, particularly in the Neotropics. Stable-hydrogen isotope (,D) analysis may allow tracking of altitudinal movements of bats but has not been explored. ,D values in rainwater (,Dp) deplete linearly with altitude and are reflected in the keratinous tissues of animals through diet. A mismatch between keratin ,D (,Dk) and that expected at the capture site based on ,Dp can indicate prior migration. We collected rainwater, claws and hair from eight bat species at two lower-montane forest sites in Nicaragua. Claw ,D for Carollia brevicauda and hair and claws for Desmodus rotundus (known to be non-migratory) fell within the predicted range based on rainwater (,17 to ,60,) suggesting these tissues were synthesized at the study site. ,D tissue values for Artibeus toltecus, Sturnira lilium, Glossophaga soricina, Anoura geoffroyi, and hair for C. brevicauda were more negative than predicted for the capture site (,60,) suggesting tissue synthesis at higher elevation and migration downslope to the capture site. However, our study area represents the highest elevation in the region; the nearest appropriate higher elevations are 350,500 km away and seasonal migration is expected to be<200 km. Thus we consider that seasonal shifts in ,Dp (9 to ,45,) may result in differences in species which molt at different times, and that diet may have driven differences in ,D. Our results suggest that the effects of molt timing and diet may first need to be understood before ,D may be successfully used to track bat movements. [source] Detection of vegetation change using reconnaissance imageryGLOBAL CHANGE BIOLOGY, Issue 3 2001Herman H. Shugart Summary Vegetation occurs at its highest elevations on equatorial mountains. Inspection of archival and recent high-resolution reconnaissance imagery of tropical mountains shows, in all cases, features indicating an increase in the elevation of mountain vegetation zones and an increase in vigour in the high-elevation vegetation. These changes are consistent with an increased plant performance from increased levels of carbon dioxide in the atmosphere as well as with a warmer or more favourable climate. [source] Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystemHYDROLOGICAL PROCESSES, Issue 18 2008Lindsey Christensen Abstract Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0·32 and 0·29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200,1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800,2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150,2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600,4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright © 2008 John Wiley & Sons, Ltd. [source] Combined effects of climate and biotic interactions on the elevational range of a phytophagous insectJOURNAL OF ANIMAL ECOLOGY, Issue 1 2008Richard M. Merrill Summary 1The ranges of many species have expanded in cool regions but contracted at warm margins in response to recent climate warming, but the mechanisms behind such changes remain unclear. Particular debate concerns the roles of direct climatic limitation vs. the effects of interacting species in explaining the location of low latitude or low elevation range margins. 2The mountains of the Sierra de Guadarrama (central Spain) include both cool and warm range margins for the black-veined white butterfly, Aporia crataegi, which has disappeared from low elevations since the 1970s without colonizing the highest elevations. 3We found that the current upper elevation limit to A. crataegi's distribution coincided closely with that of its host plants, but that the species was absent from elevations below 900 m, even where host plants were present. The density of A. crataegi per host plant increased with elevation, but overall abundance of the species declined at high elevations where host plants were rare. 4The flight period of A. crataegi was later at higher elevations, meaning that butterflies in higher populations flew at hotter times of year; nevertheless, daytime temperatures for the month of peak flight decreased by 6·2 °C per 1 km increase in elevation. 5At higher elevations A. crataegi eggs were laid on the south side of host plants (expected to correspond to hotter microclimates), whereas at lower sites the (cooler) north side of plants was selected. Field transplant experiments showed that egg survival increased with elevation. 6Climatic limitation is the most likely explanation for the low elevation range margin of A. crataegi, whereas the absence of host plants from high elevations sets the upper limit. This contrasts with the frequent assumption that biotic interactions typically determine warm range margins, and thermal limitation cool margins. 7Studies that have modelled distribution changes in response to climate change may have underestimated declines for many specialist species, because range contractions will be exacerbated by mismatch between the future distribution of suitable climate space and the availability of resources such as host plants. [source] Responses of riparian plants to flooding in free-flowing and regulated boreal rivers: an experimental studyJOURNAL OF APPLIED ECOLOGY, Issue 6 2002M. E. Johansson Summary 1The long history of river regulation has resulted in extensively changed ecosystem structures and processes in rivers and their associated environments. This fact, together with changing climatic and hydrological conditions, has increased the need to recover the natural functions of rivers. To develop guidelines for river restoration, comparative ecological experiments at contrasting water-level regimes are needed. We compared growth and survival of transplanted individuals of four riparian plant species (Betula pubescens, Carex acuta, Filipendula ulmaria and Leontodon autumnalis) over 2 years on four free-flowing and four regulated riverbank sites in northern Sweden. The species were chosen as representatives of dominating life-forms and species traits on different elevations of the riverbanks. 2In Betula and Filipendula, mean proportional growth rates were significantly higher at free-flowing sites than at regulated sites, whereas no consistent differences between free-flowing and regulated sites were found in Carex and Leontodon. Differences among species were generally in accordance with natural distribution patterns along riverbank elevation gradients and with experimental evidence on flooding tolerance, although plants of all species survived and even showed positive growth rates on elevations below their natural range of occurrence. 3Partial least squares regression was used to relate plant performance (growth and survival) to duration, frequency and timing of flooding at the different sites. Flood duration and frequency typically reduced performance in all species and during all time periods, although to various degrees. Flood events early in the experiment determined the outcome to a high degree at all sites. Variables indicating a regulated regime were mostly negatively related to plant performance, whereas free-flowing regime variables were positively related to plant performance. 4We used two of the regression models generated from our data with an acceptably high predictive power to simulate a hypothetical re-regulation scenario in run-of-river impoundments. With an overall reduction in flooding duration and frequency of 50,75%, plant performance of Filipendula at low riverbank elevations showed predicted increases of about 20,30%, levelling off to zero at the highest elevations. Reductions in summer floods represented about one-third to half of this increase. 5We conclude that for a range of species individual plant performance is clearly reduced on banks of impoundments and storage reservoirs due to changes in the water-level regime. Furthermore, our model simulation suggests that rather substantial reductions of flood duration and frequency are needed to improve plant performance on riverbanks upstream from dams in impounded rivers. River restoration principles should, however, be based on a combination of experimental data on plant performance of individual species and observed long-term changes in plant communities of regulated rivers. Consequently, successful re-regulation schemes in boreal rivers should include both reductions of summer and winter floods as well as re-introduced spring floods. [source] Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetationJOURNAL OF BIOGEOGRAPHY, Issue 10 2001Caroline P. Davies Aim To explore the relationship between modern pollen precipitation and vegetation patterns in an arid region of the Middle East. Location Data come from the central Jordan Rift from 1700 m elevation in the highlands to 300 m below sea level in the Dead Sea basin. Methods Modern pollen samples and descriptive vegetation data were collected from twenty-one locations at 100 m elevational intervals from the highest elevations on the eastern side of the rift valley, where woodlands grow, to the lowest elevation desert on earth, characterized by drought and salt tolerant plants. Pollen percentage data from each vegetation zone are compared descriptively and numerically using cluster and Principal Components Analyses (PCA). Results Three major vegetation zones: woodland, shrub steppe, and desert scrub, are identified by their dominant plant species. The widely spaced tree, Quercus calliprinos Webb, defines the Quercus L. woodland that grows above 1500 m elevation. The shrub steppe can be divided into two subzones found between about 1500 and 900 m elevation: Artemisia herba-alba Asso shrub steppe and Artemisia L. shrub steppe with Juniperus phoenica L. Desert scrub dominates the lower elevation landscape with Hammada salicornia (Moq.) Iljin the dominant shrub between 900 and 200 m and Haloxylon persicum Bge. found below 200 m elevation. Pollen spectra reflect the elevational vegetation zones. In particular, Quercus L., Juniperus L. and Tamarix L. pollen are abundant where the trees grow. Highly variable amounts of non-arboreal pollen taxa , primarily Artemisia L. and Chenopodiaceae Vent. , differentiate shrub steppe from desert scrub vegetation. Cluster and PCA of pollen data support the qualitative vegetation zonation. Main conclusions The main vegetation zones along the Jordan Rift from 1700 to ,300 m elevation can be distinguished by their modern pollen precipitation. Open vegetation types, in particular, can be recognized by their pollen spectra. High amounts of Artemisia L. pollen distinguish the moister upper elevations where Artemisia L. steppe grows. In contrast, greater amounts of Chenopodiaceae Vent. pollen characterize the drier, lower elevation deserts. [source] Restoring Tree Islands in the Everglades: Experimental Studies of Tree Seedling Survival and GrowthRESTORATION ECOLOGY, Issue 2 2008Arnold G. Van Der Valk Abstract In May 2004, 400 tree seedlings of seven different species found on tree islands in the Florida Everglades were planted at different elevations along five transects on eight newly constructed tree islands, four with and four without limestone cores. Seedlings suffered between 40 and 85% mortality during the first 120 days, the period with the lowest water levels. Ilex cassine L., Salix caroliniana Michx., Chrysobalanus icaco L., and Annona glabra had the highest number of surviving seedlings, whereas Magnolia virginiana L., Myrica cerifera L., and Acer rubrum L. had the fewest. During the remainder of the study, water levels were mostly higher and sometimes covered the entire islands for months at a time. After 220 days, nearly all seedlings of M. virginiana and My. cerifera had died. At the end of the study, seedlings of I. cassine and A. glabra had the highest survivorship rates. Seedling biomass of C. icaco and I. cassine was greatest at the highest elevations, whereas seedlings of A. glabra had similar biomass at all elevations. Seedling survivorship was not statistically different between islands with and without limestone cores; however, when seedlings of all species were combined, island core type was significantly different for aboveground biomass, seedling height, and canopy width. Because of the higher survivorship under both low and high water conditions, A. glabra, I. cassine, and S. caroliniana are the most suitable species for establishing tree species on restored tree islands in the Everglades. [source] |