High-density Regions (high-density + regions)

Distribution by Scientific Domains


Selected Abstracts


Ab initio determination of the valence electron distribution in the average structure of the incommensurately modulated calaverite AuTe2

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 5 2001
Razvan Caracas
The valence-electron density distribution of the average structure of incommensurately modulated calaverite, AuTe2, has been computed using density-functional theory. High-density regions, centered around the Au and Te atoms, are not spheric, but present charge concentrations along the Au,Te and Te,Te bonds. The electronic band structure and its corresponding density of states reveal the presence of three electronic band groups, constituted mainly by Te 5s, Au 5d and hybrids of Te 6p + Au 6s + Au 5d orbitals. The electrons belonging to the last block are responsible for the chemical bonds. [source]


Regional variations in the outer retina of atherinomorpha (Beloniformes, Atheriniformes, Cyprinodontiformes: Teleostei): Photoreceptors, cone patterns, and cone densities

JOURNAL OF MORPHOLOGY, Issue 3 2003
Frank Reckel
Abstract The outer retinae of adults of 13 atherinomorph species, representing nine different families, were examined by both light and electron microscopy. The retinae were investigated with respect to photoreceptor types, cone densities, and cone patterns. All data were composed to eye maps. This procedure allows an interspecific comparison of the regional differences within the outer retina among these shallow-water fish. Furthermore, for a more detailed pattern analysis nitro-blue tetrazolium chloride- (NBT)-stainings in the retina of Melanotaenia maccullochi are presented. Apart from rods, eight morphologically different cone types could be identified: short, intermediate, and long single cones, double cones (equal and unequal), triple cones (triangular and linear), and in Ameca splendens one quadruple cone. Dimensions and occurrence of photoreceptors vary among the respective species and within the retinal regions. In the light-adapted state, the cones are arranged in highly ordered mosaics. Five different cone tessellation types were found: row patterns, twisted row patterns, square patterns, pentagonal patterns, and, exclusively in Belone belone, a hexagonal pattern. In Melanotaenia maccullochi the different spectral photoreceptor classes correspond well with the distribution of morphological photoreceptor classes within the mosaic. Double cone density maxima together with a highly ordered cone arrangement usually occur in the nasal and/or ventral to ventrotemporal retina. In most of the species that were examined these high-density regions are presumed to process visual stimuli from the assumed main directions of vision, which mainly depend on feeding behavior and predator pressure. Our findings are discussed with respect to the variable behavioral and visual ecology and phylogeny of the respective species. J. Morphol. 257:270,288, 2003. © 2003 Wiley-Liss, Inc. [source]


The distribution of ejected subhaloes and its implication for halo assembly bias

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2009
Huiyuan Wang
ABSTRACT Using a high-resolution cosmological N -body simulation, we identify the ejected population of subhaloes, which are haloes at redshift z= 0 but were once contained in more massive ,host' haloes at high redshifts. The fraction of the ejected subhaloes in the total halo population of the same mass ranges from 9 to 4 per cent for halo masses from ,1011 to ,1012 h,1 M,. Most of the ejected subhaloes are distributed within four times the virial radius of their hosts. These ejected subhaloes have distinct velocity distribution around their hosts in comparison to normal haloes. The number of subhaloes ejected from a host of given mass increases with the assembly redshift of the host. Ejected subhaloes in general reside in high-density regions, and have a much higher bias parameter than normal haloes of the same mass. They also have earlier assembly times, so that they contribute to the assembly bias of dark matter haloes seen in cosmological simulations. However, the assembly bias is not dominated by the ejected population, indicating that large-scale environmental effects on normal haloes are the main source for the assembly bias. [source]


Head,tail Galaxies: beacons of high-density regions in clusters

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2009
Minnie Y. Mao
ABSTRACT Using radio data at 1.4 GHz from the Australia Telescope Compact Array (ATCA), we identify five head,tail (HT) galaxies in the central region of the Horologium,Reticulum Supercluster (HRS). Physical parameters of the HT galaxies were determined along with substructure in the HRS to probe the relationship between environment and radio properties. Using a density enhancement technique applied to 582 spectroscopic measurements in the 2°× 2° region about A3125/A3128, we find all five HT galaxies reside in regions of extremely high density (>100 galaxies Mpc,3). In fact, the environments surrounding HT galaxies are statistically denser than those environments surrounding non-HT galaxies and among the densest environments in a cluster. Additionally, the HT galaxies are found in regions of enhanced X-ray emission and we show that the enhanced density continues out to substructure groups of 10 members. We propose that it is the high densities that allow ram pressure to bend the HT galaxies as opposed to previously proposed mechanisms relying on exceptionally high peculiar velocities. [source]


Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
Biswajit Pandey
ABSTRACT We have quantified the average filamentarity of the galaxy distribution in seven nearly two-dimensional strips from the Sloan Digital Sky Survey Data Release Five (SDSS DR5) using a volume-limited sample in the absolute magnitude range ,21 ,Mr,,20. The average filamentarity of star-forming (SF) galaxies, which are predominantly blue, is found to be more than that of other galaxies which are predominantly red. This difference is possibly an outcome of the fact that blue galaxies have a more filamentary distribution. Comparing the SF galaxies with only the other blue galaxies, we find that the two show nearly equal filamentarity. Separately analyzing the galaxies with high star formation rates (SFR) and low SFR, we find that the latter has a more filamentary distribution. We interpret this in terms of two effects. (i) A correlation between the SFR and individual galaxy properties like luminosity with the high-SFR galaxies being more luminous. (ii) A relation between the SFR and environmental effects like the density with the high-SFR galaxies preferentially occurring in high-density regions. These two effects are possibly not independent and are operating simultaneously. We do not find any difference in the filamentarity of SF galaxies and active galactic nuclei. [source]


An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2002
Ravi K. Sheth
The excursion set approach allows one to estimate the abundance and spatial distribution of virialized dark matter haloes efficiently and accurately. The predictions of this approach depend on how the non-linear processes of collapse and virialization are modelled. We present simple analytic approximations that allow us to compare the excursion set predictions associated with spherical and ellipsoidal collapse. In particular, we present formulae for the universal unconditional mass function of bound objects and the conditional mass function which describes the mass function of the progenitors of haloes in a given mass range today. We show that the ellipsoidal collapse based moving barrier model provides a better description of what we measure in the numerical simulations than the spherical collapse based constant barrier model, although the agreement between model and simulations is better at large lookback times. Our results for the conditional mass function can be used to compute accurate approximations to the local-density mass function, which quantifies the tendency for massive haloes to populate denser regions than less massive haloes. This happens because low-density regions can be thought of as being collapsed haloes viewed at large lookback times, whereas high-density regions are collapsed haloes viewed at small lookback times. Although we have applied our analytic formulae only to two simple barrier shapes, we show that they are, in fact, accurate for a wide variety of moving barriers. We suggest how they can be used to study the case in which the initial dark matter distribution is not completely cold. [source]


Retrieving low- and medium-resolution structural features of macromolecules directly from the diffraction intensities , a real-space approach to the X-ray phase problem

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 6 2008
Wu-Pei Su
A simple mathematical algorithm is proposed to generate electron-density functions whose Fourier amplitudes match the diffraction intensities. The function is by construction everywhere positive. Using appropriate averaging procedures, the high-density regions of such functions could yield important structural information about macromolecular crystals. Trial calculations on protein crystals show that the protein envelope plus other structural motifs such as barrels and secondary structures could be recognized in the density maps. As such, the algorithm could provide a basis for new phasing methods or supplement existing phasing methods. [source]