Home About us Contact | |||
High Water Solubility (high + water_solubility)
Selected AbstractsPhotocatalytic degradation of methyl tert -butyl ether (MTBE) in contaminated water by ZnO nanoparticlesJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2008Akbar Eslami Abstract BACKGROUND: Over the past several decades methyl tert -butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV-visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert -butyl formate and tert -butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L,1. The first-order rate constants for degradation of MTBE were estimated to be 0.183,0.022 min,1 as the concentration increased from 10 to 500 mg L,1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L,1 MTBE complete mineralization was obtained after 100 min under UV-visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV-visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE-contaminated waters. Copyright © 2008 Society of Chemical Industry [source] Benzene polycarboxylic acids,A ubiquitous class of compounds in soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2010Ludwig Haumaier Abstract Black carbon (BC) occurs ubiquitously in the environment. Its oxidation in the laboratory yields a suite of benzene polycarboxylic acids (BPCAs), suggesting similar oxidation products in soils. Since only for a few soils the occurrence of BPCAs in the free form has been documented, screening for them in a broad range of contrasting soils was conducted. They were extracted from soil samples with 0.5 M NaOH and quantified using gas chromatography,mass spectrometry. As expected, BPCAs turned out to be as ubiquitous as BC. They were detected not only in every soil sample investigated so far, but also in samples from drill cores up to a depth of 10 m and in recently deposited calcareous tufa. The concentrations covered a range similar to that of some phenolic acids. The range exceeded those reported for low-molecular-weight aliphatic acids or simple sugars in soils. The distribution of BPCAs in soil profiles indicated a considerable potential of translocation within, and export from, soil, in particular of benzene hexacarboxylic (mellitic) acid. Mellitic acid may therefore be present in almost any geochemical sample affected by seepage water from soils. Its high water solubility and strong metal-complexing ability suggest it may be involved in metal-transport processes, at least on geological timescales. [source] A Water-Soluble ,-Conjugated Polymer with up to 100 mg,·,mL,1 SolubilityMACROMOLECULAR RAPID COMMUNICATIONS, Issue 16 2007Huiping Wang Abstract A cationic water-soluble polyfluorene (P2) containing a high density of tetraalkylammonium side chains in polymer backbone was synthesized and characterized. The polymer shows excellent water solubility up to 100 mg,·,mL,1 as well as high photoluminescence (PL) quantum yield of 44% in water. The relatively high cationic density and appropriate side chain length of the polymer are the key factors to achieve such high water solubility. The reduction potential of P2 is decreased as compared with its neutral polymer, reflecting the enhanced electron injection abilities. The standard NPB/Alq3 device using such a polymer as the electron injection layer shows nearly three-fold enhancement in the electroluminescence (EL) efficiency. [source] The behavior of clomazone in the soil environmentPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2009Amrith S Gunasekara Abstract BACKGROUND: Clomazone is a herbicide used to control broadleaf weeds and grasses. Clomazone use in agriculturally important crops and forests for weed control has increased and is a potential water contaminant given its high water solubility (1100 µg mL,1). Soil sorption is an environmental fate parameter that may limit its movement to water systems. The authors used model rice and forest soils of California to test clomazone sorption affinity, capacity, desorption, interaction with soil organic matter and behavior with black carbon. RESULTS: Sorption of clomazone to the major organic matter fraction of soil, humic acid (HA) (Kd = 29,87 L kg,1), was greater than to whole soils (Kd = 2.3,11 L kg,1). Increased isotherm non-linearity was observed for the whole soils (N = 0.831,0.893) when compared with the humic acids (N = 0.954,0.999). Desorption isotherm results showed hysteresis, which was greatest at the lowest solution concentration of 0.067 µg mL,1 for all whole soils and HA extracts. Aliphatic carbon content appeared to contribute to increased isotherm linearity. CONCLUSION: The results indicate that clomazone does not sorb appreciably to sandy or clay soils. Its sorption affinity and capacity is greater in humic acid, and consequently clomazone has difficulty desorbing from soil organic matter. Sorption appears to follow processes explained by the dual-mode model, the presence of fire residues (black carbon) and a recently proposed sorption mechanism. Copyright © 2009 Society of Chemical Industry [source] |