High Sequence Divergence (high + sequence_divergence)

Distribution by Scientific Domains


Selected Abstracts


Dynamics of genome evolution in facultative symbionts of aphids

ENVIRONMENTAL MICROBIOLOGY, Issue 8 2010
Patrick H. Degnan
Summary Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, ,Candidatus Regiella insecticola' and ,Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ,55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids). [source]


Haplotype divergence in Beta vulgaris and microsynteny with sequenced plant genomes

THE PLANT JOURNAL, Issue 1 2009
Juliane C. Dohm
Summary We characterized two overlapping sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) clones representing different haplotypes. A total of 254 kbp of the genomic sequence was determined, of which the two BACs share 92 kbp. Eleven of 15 genes discovered in the sequenced interval locate to the overlap region. The haplotypes differ in exons by 1% (nucleotide level) and in non-coding regions by 9% (6% mismatches, 3% gaps; alignable regions only). Large indels or high sequence divergence comprised 11% of either sequence. Of such indels, 68 and 45%, respectively, could be attributed to haplotype-specific integration of transposable elements. We identified novel repeat candidates by comparing the two BAC sequences to a set of genomic sugar beet sequences. Synteny was found with Arabidopsis chromosome 1 (At1), At2 and At4, Medicago chromosome 7, Vitis chromosome 15 and paralogous regions on poplar chromosomes II and XIV. [source]


High mitochondrial differentiation levels between wild and domestic Bactrian camels: a basis for rapid detection of maternal hybridization

ANIMAL GENETICS, Issue 3 2010
K. Silbermayr
Summary Hybridization between wild species and their domestic congeners often threatens the gene pool of the wild species. The last wild Bactrian camel (Camelus ferus) populations in Mongolia and China are examples of populations facing such a hybridization threat. To address this key issue in the conservation of wild camels, we analysed wild, hybrid and domestic Bactrian camels (Camelus bactrianus) originating from Mongolia, China and Austria. Through screening of an 804-base-pair mitochondrial fragment, we identified eight mitochondrial haplotypes and found high sequence divergence (1.9%) between C. ferus and C. bactrianus. On the basis of a mitochondrial DNA sequence fixed difference, we developed a diagnostic PCR restriction fragment length polymorphism (PCR-RFLP) assay to differentiate between wild and domestic camel samples. We applied the assay to 81 individuals and confirmed the origin of all samples including five hybrids with known maternal ancestry. The PCR-RFLP system was effective for both traditional (blood, skin) and non-invasive samples (faeces, hair), as well as for museum specimens. Our results demonstrate high levels of mitochondrial differentiation between wild and domestic Bactrian camels and that maternal hybridization can be detected by a rapid and reliable PCR-RFLP system. [source]


MOLECULAR SYSTEMATICS OF RIVER DOLPHINS INFERRED FROM COMPLETE MITOCHONDRIAL CYTOCHROME- B GENE SEQUENCES

MARINE MAMMAL SCIENCE, Issue 1 2002
Guang Yang
Abstract 1,140 bp of the complete mitochondrial cytochrome- b gene sequences of baiji (Lipotes vexillifer), franciscana (Pontoporia blainvillei), and Ganges river dolphin (Platanista gangetica gangetica) were determined to address the systematic position and phylogeny of extant river dolphins with combination of homologous sequences of other cetaceans. The neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) phylogenetic analyses all identified the river dolphins into three lineages, i. e., Platanista, Lipotes, and Inia+Pontoporia. The Lipotes did not have sister relationship with either Platanista or Inia+Pontoporia, which strongly supported the referral of Lipotes to a separate family, i. e., Lipotidae. There were very high sequence divergences between all river dolphin genera, suggesting a relatively longer period of separation time than those among other odontocete families. [source]