Home About us Contact | |||
High Ridge (high + ridge)
Selected AbstractsInfluences of the Indian Ocean dipole on the Asian summer monsoon in the following yearINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 14 2008Yuan Yuan Abstract By exploring the spatiotemporal features of the Indian Ocean Dipole (IOD) both on the sea surface and in the subsurface ocean, the present article reveals that the subsurface dipole mode, with larger amplitude than the surface one, is likely to prolong the dipole signal for a long time. Using the wind and geopotential height data from NCEP/NCAR, this article further investigates IOD impacts on the Asian summer monsoon activities in the following year. A normal (late) South China Sea summer monsoon onset is associated with the previous positive (negative) IOD. In the summer after an IOD year, a positive (negative) IOD tends to induce a stronger (weaker) 100-hPa South Asian High, with a more (less) eastward-extending high ridge, and also an enhanced (a weakened) 500-hPa western Pacific subtropical high, with a westward-advancing (an eastward-retreating) high ridge. Influenced by the anomalous 850-hPa Asian monsoon circulations and the longitudinal position of the 500-hPa subtropical high ridge, summer rainfall in China also exhibits different patterns corresponding to different phases of the IOD in the previous year. Copyright © 2008 Royal Meteorological Society [source] Force-Free Patterning of Polyelectrolyte Multilayers under Solvent AssistanceMACROMOLECULAR MATERIALS & ENGINEERING, Issue 8 2010Lulu Han Abstract Physical patterns were created on hydrated PSS/PDADMAC multilayers without using external force. A typical process was to put a PDMS stamp onto the wet and swollen multilayers, which were then put into an oven and maintained for a period of time to micromold the multilayers. The influence of molding temperature and time, multilayer thickness, solvent quality, and multilayer compositions on pattern formation were elucidated. Evolution of the patterns from double lines, double strips, and meniscus-shaped ridges to high ridges was observed under all conditions, revealing that this is a universal principle for this process. Finally, patterns on PAA/PAH and PSS/PAH multilayers were also prepared at the optimal conditions, highlighting its wide generality on the multilayer patterning. [source] The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processesTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 633 2008Justin R. Minder Abstract The climatology of small-scale patterns of mountain precipitation is poorly constrained, yet important for applications ranging from natural hazard assessment to understanding the geologic evolution of mountain ranges. Synthesizing four rainy seasons of high-resolution precipitation observations and mesoscale model output (from the Penn State/NCAR MM5), reveals a persistent small-scale pattern of precipitation over the ,10 km wide, ,800 m high ridges and valleys of the western Olympic Mountains, Washington State, USA. This pattern is characterized by a 50,70% excess accumulation over the ridge crests relative to the adjacent valleys in the annual mean. While the model shows excellent skill in simulating these patterns at seasonal time-scales, major errors exist for individual storms. Investigation of a range of storm events has revealed the following mechanism for the climatological pattern. Regions of enhanced condensation of cloud water are produced by ascent in stable flow over the windward slopes of major ridges. Synoptically generated precipitation grows by collection within these clouds, leading to enhanced precipitation which is advected by the prevailing winds. Instances of atypical patterns of precipitation suggest that under certain conditions (during periods with a low freezing level, or convective cells) fundamental changes in small-scale patterns may occur. However, case-studies and composite analysis suggest that departures from the pattern of ridge-top enhancement are rare; the basic patterns and processes appear robust to changes in temperature, winds, and background rainfall rates. Copyright © 2008 Royal Meteorological Society [source] |