Home About us Contact | |||
High Resolution Limited Area Model (high + resolution_limited_area_model)
Selected AbstractsAssimilation of SEVIRI infrared radiances with HIRLAM 4D-VarTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 645 2009M. Stengel Abstract Four-dimensional variational data assimilation (4D-Var) systems are ideally suited to obtain the best possible initial model state by utilizing information about the dynamical evolution of the atmospheric state from observations, such as satellite measurements, distributed over a certain period of time. In recent years, 4D-Var systems have been developed for several global and limited-area models. At the same time, spatially and temporally highly resolved satellite observations, as for example performed by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board the Meteosat Second Generation satellites, have become available. Here we demonstrate the benefit of a regional NWP model's analyses and forecasts gained by the assimilation of those radiances. The 4D-Var system of the HIgh Resolution Limited Area Model (HIRLAM) has been adjusted to utilize three of SEVIRI's infrared channels (located around 6.2 µm, 7.3 µm, and 13.4 µm, respectively) under clear-sky and low-level cloud conditions. Extended assimilation and forecast experiments show that the main direct impact of assimilated SEVIRI radiances on the atmospheric analysis were additional tropospheric humidity and wind increments. Forecast verification reveals a positive impact for almost all upper-air variables throughout the troposphere. Largest improvements are found for humidity and geopotential height in the middle troposphere. The observations in regions of low-level clouds provide especially beneficial information to the NWP system, which highlights the importance of satellite observations in cloudy areas for further improvements in the accuracy of weather forecasts. Copyright © 2009 Royal Meteorological Society [source] The use of numerical weather forecast model predictions as a source of data for irrigation modellingMETEOROLOGICAL APPLICATIONS, Issue 4 2005A. Venäläinen The use of numerical weather forecast model data as a source of data for soil moisture modelling was tested. Results show that the potential evaporation calculated using the Penman-Monteith equation can be estimated accurately using data obtained from the output of a high resolution numerical atmospheric model (HIRLAM, High Resolution Limited Area Model). The mean bias error was 0.26 mm for a 36-hour sum and the root mean square error was 2.14 mm. The evaporation obtained directly from HIRLAM was systematically smaller because this direct model output represents the real evaporation rather than the potential evaporation. The precipitation forecasts were less accurate. When the accuracy of parameters required for the calculation of potential evaporation were studied for one station, no serious bias was found. When two different irrigation models (AMBAV and SWAP) were run over one summer using either measured or HIRLAM data as the input, the results given by the models were quite similar regardless of input data source. The largest differences between the model outputs were caused by the formulation of crop and soil characteristics in the irrigation models. Copyright © 2005 Royal Meteorological Society [source] An observing-system experiment with ground-based GPS zenith total delay data using HIRLAM 3D-Var in the absence of satellite dataTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 650 2010Reima Eresmaa Abstract Ground-based receiver networks of the Global Positioning System (GPS) provide observations of atmospheric water vapour with a high temporal and horizontal resolution. Variational data assimilation allows researchers to make use of zenith total delay (ZTD) observations, which comprise the atmospheric effects on microwave signal propagation. An observing-system experiment (OSE) is performed to demonstrate the impact of GPS ZTD observations on the output of the High Resolution Limited Area Model (HIRLAM). The GPS ZTD observations for the OSE are provided by the EUMETNET GPS Water Vapour Programme, and they are assimilated using three-dimensional variational data assimilation (3D-Var). The OSE covers a five-week period during the late summer of 2008. In parallel with GPS ZTD data assimilation in the regular mode, the impact of a static bias-correction algorithm for the GPS ZTD data is also assessed. Assimilation of GPS ZTD data, without bias correction of any kind, results in a systematic increase in the forecast water-vapour content, temperature and tropospheric relative topography. A slightly positive impact is shown in terms of decreased forecast-error standard deviation of lower and middle tropospheric humidity and lower tropospheric geopotential height. Moreover, verification of categorical forecasts of 12 h accumulated precipitation shows a positive impact. The application of the static bias-correction scheme is positively verified in the case of the mean forecast error of lower tropospheric humidity and when relatively high precipitation accumulations are considered. Copyright © 2010 Royal Meteorological Society [source] Three-dimensional simulation of the ASTEX Lagrangian 1 field experiment with a regional numerical weather prediction modelTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 597 2004Robert Sigg Abstract The Atlantic Stratocumulus Transition Experiment (ASTEX) first Lagrangian experiment (Lagrangian 1) is here simulated with a modified version of the regional forecast model HIRLAM (High Resolution Limited Area Model). The main modification is that moist turbulent fluxes are accounted for in the model. Trajectory calculations show good agreement with earlier estimations. The initially rather shallow stratocumulus topped marine boundary layer is deepening along the trajectory, and in the end cumulus clouds are formed that penetrate the boundary-layer top. The model predicts this change in cloudiness, but the boundary layer is too shallow in the model. A simulation with modified initial conditions shows improved results, but is still too slow in increasing the boundary-layer depth. Additional factors that influence the boundary-layer growth are: the increase in sea surface temperatures, lower modelled wind speeds, low entrainment rates due to coarse vertical resolution, and synoptic-scale subsidence. An anticyclone at the surface moved slightly northward during the simulation. The anticyclone was accompanied at 500 hPa by a deepening cyclone and, therefore, one would expect synoptic subsidence in the area of the Lagrangian 1. The modelled negative vertical wind component at the boundary-layer top oscillates, and this is examined using spectral analysis. The results show that the vertical velocity is influenced by cumulus clouds on time-scales up to 15 h with a peak at 9 h. The horizontal and vertical wavelengths of the vertical velocity disturbances are estimated from model output to be 400,500 km and 6,10 km, respectively. Using the estimated vertical wavelength and linear theory for hydrostatic inertia,gravity waves, a horizontal wavelength of 350,550 km was calculated for a frequency of 9 h. The model results thus indicate that these types of waves are responsible for the undulating vertical velocity. Finally, an estimation of the synoptic-scale vertical velocity is calculated by filtering out all scales smaller than 15 h from the vertical velocity signal. This results in subsidence both at the beginning and the end of the Lagrangian with vertical velocities between ,0.1 and ,0.4 cm s,1. Copyright © 2004 Royal Meteorological Society [source] |