High Resolution Imaging (high + resolution_imaging)

Distribution by Scientific Domains


Selected Abstracts


Diffraction imaging in depth

GEOPHYSICAL PROSPECTING, Issue 5 2008
T.J. Moser
ABSTRACT High resolution imaging is of great value to an interpreter, for instance to enable identification of small scale faults, and to locate formation pinch-out positions. Standard approaches to obtain high-resolution information, such as coherency analysis and structure-oriented filters, derive attributes from stacked, migrated images. Since they are image-driven, these techniques are sensitive to artifacts due to an inadequate migration velocity; in fact the attribute derivation is not based on the physics of wave propagation. Diffracted waves on the other hand have been recognized as physically reliable carriers of high- or even super-resolution structural information. However, high-resolution information, encoded in diffractions, is generally lost during the conventional processing sequence, indeed migration kernels in current migration algorithms are biased against diffractions. We propose here methods for a diffraction-based, data-oriented approach to image resolution. We also demonstrate the different behaviour of diffractions compared to specular reflections and how this can be leveraged to assess characteristics of subsurface features. In this way a rough surface such as a fault plane or unconformity may be distinguishable on a diffraction image and not on a traditional reflection image. We outline some characteristic properties of diffractions and diffraction imaging, and present two novel approaches to diffraction imaging in the depth domain. The first technique is based on reflection focusing in the depth domain and subsequent filtering of reflections from prestack data. The second technique modifies the migration kernel and consists of a reverse application of stationary-phase migration to suppress contributions from specular reflections to the diffraction image. Both techniques are proposed as a complement to conventional full-wave pre-stack depth migration, and both assume the existence of an accurate migration velocity. [source]


Aspects on the relief of living surfaces using atomic force microscopy allow "art" to imitate nature

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2010
Rosa POLYMENI
Abstract The visualization of the surface of biological samples using an atomic force microscope reveals features of the external relief and can resolve very fine and detailed features of the surface. We examined specimens from the skin of the amphibians Salamandra salamandra Linnaeus, 1758, Lyciasalamandra luschani basoglui Baran & Atatür, 1980 and Mesotriton alpestris Laurenti, 1768, and from the surface of pollen grains of the plant species Cyclamen graecum Link, 1835 and Cistus salviifolius Linnaeus, 1753, which exhibit certain interesting features, imaged at the nanoscale level. It is likely that the relief influences the attributes of the interfaces between the tissues and the environment. We found that the microsculpture increases in size the surface of the examined tissues and this might be particularly important for their performance in the field. Microsculpturing of amphibians' skin may affect water regulation, dehydration and rehydration, and cutaneous gas exchange. Pollen grain relief might affect the firmness of the contact between pollen surface and water droplets. High resolution imaging of the external relief showed that roughening might induce wetting and influence the water status of the specimens. In addition, roughness affects the radius of water droplets retained in between the projections of the external relief. Roughness of the tissues was highly correlated with their vertical distance, whereas surface distances were highly correlated with horizontal distances. By enabling a more detailed characterization of the external sculptures, through sophisticated techniques, a more comprehensive examination of the samples indicates similarities among different living tissues, originated from different kingdoms, which can be attributed to environmental conditions and physiological circumstances. [source]


High resolution imaging of the knee on 3-Tesla MRI: A pictorial review

CLINICAL ANATOMY, Issue 5 2008
N. Griffin
Abstract The recent introduction of 3-Tesla MRI offers substantial advances in musculoskeletal applications. High resolution images can now be obtained with shorter data acquisition times. This article provides a pictorial review of 3-Tesla imaging in the knee with descriptions of both normal anatomy and the more common lesions involving the menisci, ligaments, and articular cartilage. A discussion of the issues associated with imaging at higher field strengths is also included. Clin. Anat. 21:374,382, 2008. © 2008 Wiley-Liss, Inc. [source]


Use of episcopic differential interference contrast microscopy to identify bacterial biofilms on salad leaves and track colonization by Salmonella Thompson

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2008
J. C. Warner
Summary Zoonotic pathogens such as Salmonella can cause gastrointestinal illness if they are ingested with food. Foods such as salads pose a greater risk because they are consumed raw and have been the source of major outbreaks of disease from fresh produce. The novel light microscopy methods used in this study allow detailed, high resolution imaging of the leaf surface environment (the phyllosphere) and allow pathogen tracking. Episcopic differential interference contrast microscopy coupled with epifluorescence was used to view the natural microflora in situ on salad leaves and their topographical distribution. Fluorescent nucleic acid staining was used to differentiate between bacterial colonists and inorganic debris. Salmonella enterica serovar Thompson expressing green fluorescent protein was inoculated onto individual spinach leaves for 24 h at 22°C in order to observe spatial and temporal patterning of colonization on the two surfaces of each leaf under different osmotic conditions. The results obtained show that salad leaves are host to high numbers of bacteria, typically 105 per square millimetre. Cells are present in complex three-dimensional aggregations which often have a slimy appearance, suggesting the presence of biofilms. Washing of the leaves had little effect on the number of adherent pathogens, suggesting very strong attachment. Episcopic differential interference contrast microscopy is a rapid alternative to both scanning electron microscopy and confocal laser scanning microscopy for visualizing leaf topography and biofilm formation in the natural state. [source]


Electron Energy Loss Spectroscopy

IMAGING & MICROSCOPY (ELECTRONIC), Issue 2 2007
Chemical Information at the Nanometer Scale
Abstract The combination of high resolution imaging with energy loss spectroscopy allows to resolve questions about the morphology, structure, composition and electronic structure of a material in a single instrument. By the assistance of band structure calculations and simulated EELS spectra, the experimental data can be analyzed in detail. Following this approach it is possible to study the relation between the geometric and electronic structure of materials at the nanometer scale. [source]


Visualization of localized store-operated calcium entry in mouse astrocytes.

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Close proximity to the endoplasmic reticulum
Unloading of endoplasmic reticulum (ER) Ca2+ stores activates influx of extracellular Ca2+ through ,store-operated' Ca2+ channels (SOCs) in the plasma membrane (PM) of most cells, including astrocytes. A key unresolved issue concerning SOC function is their spatial relationship to ER Ca2+ stores. Here, using high resolution imaging with the membrane-associated Ca2+ indicator, FFP-18, it is shown that store-operated Ca2+ entry (SOCE) in primary cultured mouse cortical astrocytes occurs at plasma membrane,ER junctions. In the absence of extracellular Ca2+, depletion of ER Ca2+ stores using cyclopiazonic acid, an ER Ca2+ -ATPase inhibitor, and caffeine transiently increases the sub-plasma-membrane Ca2+ concentration ([Ca2+]SPM) within a restricted space between the plasma membrane and adjacent ER. Restoration of extracellular Ca2+ causes localized Ca2+ influx that first increases [Ca2+]SPM in the same restricted regions and then, with a delay, in ER-free regions. Antisense knockdown of the TRPC1 gene, proposed to encode endogenous SOCs, markedly reduces SOCE measured with Fura-2. High resolution immunocytochemistry with anti-TRPC1 antibody reveals that these TRPC-encoded SOCs are confined to the PM microdomains adjacent to the underlying ,junctional' ER. Thus, Ca2+ entry through TRPC-encoded SOCs is closely linked, not only functionally, but also structurally, to the ER Ca2+ stores. [source]


An insider's guide to the microtubule cytoskeleton of Giardia

CELLULAR MICROBIOLOGY, Issue 5 2010
Scott C. Dawson
Summary Giardia intestinalis is a zoonotic, parasitic protist with a complex microtubule cytoskeleton critical for motility, attachment, intracellular transport, cell division and transitioning between its two life cycle stages , the cyst and the trophozoite. This review focuses on the structures of the primary elements of the microtubule cytoskeleton and cytoskeletal dynamics throughout this complex giardial life cycle. The giardial cytoskeleton has both highly dynamic elements and more stable MT structures, including several novel structures like the ventral disc that change conformation via unknown mechanisms. While our knowledge of the giardial cytoskeleton is primarily cytological, the completed Giardia genome and recently developed reverse genetic tools affords an opportunity to uncover the mechanisms of Giardia's cytoskeletal dynamics. Fundamental areas of giardial cytoskeletal biology remain to be explored, including high resolution imaging and compositional characterization of cytoskeletal structures required for elucidating the molecular mechanisms of cytoskeletal functioning. [source]