High Predation Risk (high + predation_risk)

Distribution by Scientific Domains


Selected Abstracts


Non-lethal effects of predation in birds

IBIS, Issue 1 2008
WILL CRESSWELL
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ,density' effects), where prey is consumed, or through non-lethal effects (trait-mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non-lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non-lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti-predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade-offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long-term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging,predation risk trade-off is probably an effective framework for understanding the importance of non-lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade-off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non-lethal effects decouple the relationship between predator density and direct mortality rate. The trade-off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate. [source]


The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares

JOURNAL OF ANIMAL ECOLOGY, Issue 6 2009
Michael J. Sheriff
Summary 1.,Prey responses to high predation risk can be morphological or behavioural and ultimately come at the cost of survival, growth, body condition, or reproduction. These sub-lethal predator effects have been shown to be mediated by physiological stress. We tested the hypothesis that elevated glucocorticoid concentrations directly cause a decline in reproduction in individual free-ranging female snowshoe hares, Lepus americanus. We measured the cortisol concentration from each dam (using a faecal analysis enzyme immunoassay) and her reproductive output (litter size, offspring birth mass, offspring right hind foot (RHF) length) 30 h after birth. 2.,In a natural monitoring study, we monitored hares during the first and second litter from the population peak (2006) to the second year of the decline (2008). We found that faecal cortisol metabolite (FCM) concentration in dams decreased 52% from the first to the second litter. From the first to the second litter, litter size increased 122%, offspring body mass increased 130%, and offspring RHF length increased 112%. Dam FCM concentrations were inversely related to litter size (r2 = 0·19), to offspring birth mass (r2 = 0·32), and to offspring RHF length (r2 = 0·64). 3.,In an experimental manipulation, we assigned wild-caught, pregnant hares to a control and a stressed group and held them in pens. Hares in the stressed group were exposed to a dog 1,2 min every other day before parturition to simulate high predation risk. At parturition, unsuccessful-stressed dams (those that failed to give birth to live young) and stressed dams had 837% and 214%, respectively, higher FCM concentrations than control dams. Of those females that gave birth, litter size was similar between control and stressed dams. However, offspring from stressed dams were 37% lighter and 16% smaller than offspring from control dams. Increasing FCM concentration in dams caused the decline of offspring body mass (r2 = 0·57) and RHF (r2 = 0·52). 4.,This is the first study in a free-ranging population of mammals to show that elevated, predator-induced, glucocorticoid concentrations in individual dams caused a decline in their reproductive output measured both by number and quality of offspring. Thus, we provide evidence that any stressor, not just predation, which increases glucocorticoid concentrations will result in a decrease in reproductive output. [source]


Overwinter mass loss of snowshoe hares in the Yukon: starvation, stress, adaptation or artefact?

JOURNAL OF ANIMAL ECOLOGY, Issue 1 2006
KAREN E. HODGES
Summary 1Overwinter mass loss can reduce energetic requirements in mammals (Dehnel's phenomenon). Alternatively, mass loss can result from food limitation or high predation risk. 2We use data from fertilizer, food-supplementation and predator-exclusion experiments in the Yukon during a population cycle from 1986 to 1996 to test the causes of overwinter mass loss by snowshoe hares (Lepus americanus). In all years, some hares on control sites gained mass overwinter. During the increase phase the majority gained mass, but in all other phases the majority lost mass. 3Snowshoe hares weighing < 1000 g in autumn always gained mass overwinter, as did the majority that weighed 1000,1400 g. Hares weighing > 1800 g in autumn usually lost mass. 4Snowshoe hares on the predator-exclosure + food site gained mass overwinter in all years. Hares on the food-supplementation sites lost mass during the decline but gained mass in all other phases. Fertilization had little effect on mass dynamics. 5Snowshoe hares were more likely to lose mass during winters with low survival rates. Snowshoe hares on the predator-exclosure treatments were more likely to gain mass than were hares on control sites. 6Overwinter mass loss was correlated with maximum snow depth. At equivalent snow depths, hares on food-supplemented areas lost 98 g (± 14·6 SE) less on average than hares on the controls and predator-exclosure treatment. 7Bone-marrow fat was related to body mass and cause of death. Small hares had the lowest marrow fat. Hares killed by humans had higher marrow fat than those killed by predators; hares that simply died had the lowest marrow fat. Hares on food-supplemented sites had the highest kidney and marrow fat. 8Overwinter-mass loss for snowshoe hares is explained interactively by winter conditions, food supply, predation risk and autumn mass. Some snowshoe hares lost mass overwinter in all years and on all treatments, suggesting that reducing body mass may facilitate survival, especially in cases where foraging costs are high energetically or increase predation risk. [source]


The impact of predation risk from small mustelids on prey populations

MAMMAL REVIEW, Issue 3-4 2000
Kai Norrdahl
ABSTRACT Small mustelids are ,snake-like' mammals adapted to hunt small rodents, which are their principal prey, in tunnels leaving practically no refuge for the prey. Prey rodents have adaptive behaviours to situations where the predation risk from mustelids is high, including reduced activity and escape by climbing. Small mustelids may affect prey population dynamics directly through killing (increased mortality) and/or indirectly through behavioural changes in prey as a response to the presence of mustelids (predation risk). The Predator-Induced Breeding Suppression hypothesis (PIBS) states that a trade-off between survival and reproduction should lead to delayed breeding under temporarily high predation risk, so that the mere presence of predators may reduce reproductive output. Current results suggest that small mustelids mainly affect prey population growth rate directly through killing. In many cyclic rodent populations, small mustelid predation is a major mortality factor, and experimental evidence supports the hypothesis that these predators drive prolonged summer declines in prey. In contrast, the evidence for PIBS is controversial. Experimental evidence shows that the indirect effects of small mustelids on prey populations are negligible during the best breeding season. However, in other seasons, the presence of predators may indirectly affect prey populations, although this has not been studied experimentally. Prey rodents may decrease mobility as a response to high predation risk by small mustelids, and this reduction in mobility decreases feeding. Reduced feeding affects the energy reserves of voles, and may delay maturation or lower the size of the first litter. [source]