High Potassium (high + potassium)

Distribution by Scientific Domains


Selected Abstracts


Characterization of agonist-induced endothelium-dependent vasodilatory responses in the vascular bed of the equine digit

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2008
Y. BERHANE
The role of endothelium-derived relaxing factors was studied in the regulation of vascular responses in the Krebs perfused equine isolated digit. Perfusion pressure was recorded in response to bolus doses of 5-hydroxytryptamine (6 nmol) alone or co-administered with carbachol (CCh; 0.2 ,mol), bradykinin (BK; 0.2 nmol), substance P (SP; 0.2 nmol) or sodium nitroprusside (SNP; 0.2 ,mol). N, -Nitro- l -Arginine methyl ester hydrochloride (l -NAME; 300 ,m) caused partial but significant inhibition of CCh-induced vasodilatory response, whereas BK and SP-induced responses were resistant to l -NAME. High potassium (K+, 30 mm) and the cytochrome P - 450 (CYP) epoxygenase inhibitor, clotrimazole (10 ,m) plus l -NAME (100 ,m), completely abolished the CCh, BK and SP-induced vasodilatory responses, whereas the response to SNP was unaffected. In contrast, the l -NAME-resistant proportion of CCh, BK and SP-induced vasodilatory response was not inhibited by the highly selective CYP2C9 inhibitor, sulphaphenazole (10 ,m). The cyclo-oxygenase inhibitor, ibuprofen (10 ,m) did not affect the CCh, BK and SP-induced responses. These data demonstrate that CCh, BK and SP-induced relaxation in the equine digit involve a combination of the NO and endothelium-derived hyperpolarizing factor (EDHF) pathways. These results do not support the evidence for the involvement of CYP-derived epoxyeicosatrienoic acids and the exact nature of EDHF in the equine digit remains to be established. [source]


Negative cross-talk between presynaptic adenosine and acetylcholine receptors

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
A. V. Shakirzyanova
Abstract Functional interactions between presynaptic adenosine and acetylcholine (ACh) autoreceptors were studied at the frog neuromuscular junction by recording miniature end-plate potentials (MEPPs) during bath or local application of agonists. The frequency of MEPPs was reduced by adenosine acting on presynaptic adenosine A1 receptors (EC50 = 1.1 µm) or by carbachol acting on muscarinic M2 receptors (EC50 = 1.8 µm). However, carbachol did not produce the depressant effect when it was applied after the action of adenosine had reached its maximum. This phenomenon implied that the negative cross-talk (occlusion) had occurred between A1 and M2 receptors. Moreover, the occlusion was receptor-specific as ATP applied in the presence of adenosine continued to depress MEPP frequency. Muscarinic antagonists [atropine or 1-[[2-[(diethylamino)methyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepine-6-one) (AFDX-116)] had no effect on the inhibitory action of adenosine and adenosine antagonists [8-(p -sulfophenyl)theophylline (8-SPT) or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX)] had no effect on the action of carbachol. These data suggested that membrane,delimited interactions did not occur between A1 and M2 receptors. Both carbachol and adenosine similarly inhibited quantal release triggered by high potassium, ionomycin or sucrose. These results indicated a convergence of intracellular pathways activated by M2 and A1 receptors to a common presynaptic effector located downstream of Ca2+ influx. We propose that the negative cross-talk between two major autoreceptors could take place during intense synaptic activity and thereby attenuate the presynaptic inhibitory effects of ACh and adenosine. [source]


Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol inPKC,-deficient mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
M. Foster Olive
Abstract There is increasing evidence that individual protein kinase C (PKC) isozymes mediate specific effects of ethanol on the nervous system. In addition, multiple lines of evidence suggest that the mesoaccumbens dopamine reward system is critically involved in the rewarding and reinforcing effects of ethanol. Yet little is known about the role of individual PKC isozymes in ethanol reinforcement processes or in regulation of mesolimbic systems. In this study, we report that mice lacking the epsilon isoform of PKC (PKC,) show reduced operant ethanol self-administration and an absence of ethanol-induced increase in extracellular dopamine levels in the nucleus accumbens. PKC, null mice exhibited a 53% decrease in alcohol-reinforced operant responses under basal conditions, as well as following ethanol deprivation. Behavioural analysis revealed that while both genotypes had the same number of drinking bouts following deprivation, PKC, null mice demonstrated a 61% reduction in number of ethanol reinforcers per bout and a 57% reduction in ethanol-reinforced response rate. In vivo microdialysis experiments showed that, in contrast to wild-type mice, PKC, null mice exhibited no change in extracellular levels of dopamine in the nucleus accumbens following acute administration of ethanol (1 and 2 g/kg i.p.), while mesolimbic dopamine responses to cocaine (20 mg/kg i.p.) or high potassium (100 m m) in these mice were comparable with that of wild-types. These data provide further evidence that increases in extracellular mesolimbic dopamine levels contribute to the reinforcing effects of ethanol, and indicate that pharmacological agents inhibiting PKC, may be useful in the treatment of alcohol dependence. [source]


The action of high K+ and aglycaemia on the electrical properties and synaptic transmission in rat intracardiac ganglion neurones in vitro

EXPERIMENTAL PHYSIOLOGY, Issue 2 2009
Jhansi Dyavanapalli
We have investigated the action of two elements of acute ischaemia, high potassium and aglycaemia, on the electrophysiological properties and ganglionic transmission of adult rat intracardiac ganglion (ICG) neurones. We used a whole-mount ganglion preparation of the right atrial ganglion plexus and sharp microelectrode recording techniques. Increasing extracellular K+ from its normal value of 4.7 mm to 10 mm decreased membrane potential and action potential after-hyperpolarization amplitude but otherwise had no effect on postganglionic membrane properties. It did, however, reduce the ability of synaptically evoked action potentials to follow high-frequency (100 Hz) repetitive stimulation. A further increase in K+ changed both the passive and the active membrane properties of the postganglionic neurone: time constant, membrane resistance and action potential overshoot were all decreased in high K+ (20 mm). The ICG neurones display a predominantly phasic discharge in response to prolonged depolarizing current pulses. High K+ had no impact on this behaviour but reduced the time-dependent rectification response to hyperpolarizing currents. At 20 mm, K+ practically blocked ganglionic transmission in most neurones at all frequencies tested. Aglycaemia, nominally glucose-free physiological saline solution (PSS), increased the time constant and membrane resistance of ICG neurones but otherwise had no action on their passive or active properties or ganglionic transmission. However, the combination of aglycaemia and 20 mm K+ displayed an improvement in passive properties and ganglionic transmission when compared with 20 mm K+ PSS. These data indicate that the presynaptic terminal is the primary target of high extracellular potassium and that aglycaemia may have protective actions against this challenge. [source]


Antioxidant compounds in green and red peppers as affected by irrigation frequency, salinity and nutrient solution composition

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 8 2009
Alicia Marín
Abstract BACKGROUND: There is a need to encourage more sustainable agricultural practices, reducing inputs of water and fertilisers while minimising any negative impact on fruit quality. The effect of irrigation frequency, salinity and potassium and calcium fertilisation on the content of bioactive compounds and quality attributes of green and red peppers grown with and without substrate was evaluated. RESULTS: Low irrigation frequency and salinity improved the quality attributes (dry matter, soluble solids content and titratable acidity) of pepper. Low irrigation frequency increased vitamin C content by 23% in green peppers, while in red fruits it was not affected. In contrast, total carotenoids and provitamin A only increased in red fruits by 30% and 15%, respectively, as a consequence of low irrigation frequency. When the effect of potassium and calcium doses was investigated, it was shown that a high proportion of potassium increased the vitamin C, provitamin A and total phenolic content of red and green peppers, whereas pepper grown at low calcium doses, presented the highest content in carotenoids and provitamin A. CONCLUSION: Low irrigation frequency and fertilisation with high potassium and low calcium doses improved pepper quality increasing the content of bioactive compounds. Copyright © 2009 Society of Chemical Industry [source]


Bimodal role of conventional protein kinase C in insulin secretion from rat pancreatic , cells

THE JOURNAL OF PHYSIOLOGY, Issue 1 2004
Hui Zhang
The present study was conducted to evaluate the role of conventional protein kinase C (PKC) in calcium-evoked insulin secretion. In rat , cells transfected with green fluorescent protein-tagged PKC-, (PKC-,,EGFP), a depolarizing concentration of potassium induced transient elevation of cytoplasmic free calcium ([Ca2+]c), which was accompanied by transient translocation of PKC-,,EGFP from the cytosol to the plasma membrane. Potassium also induced transient translocation of PKC-,,EGFP, the C1 domain of PKC-, and PKC-,,GFP. A high concentration of glucose induced repetitive elevation of [Ca2+]c and repetitive translocation of PKC-,,EGFP. Diazoxide completely blocked both elevation of [Ca2+]c and translocation of PKC-,,EGFP. We then studied the role of conventional PKC in calcium-evoked insulin secretion using rat islets. When islets were incubated for 10 min with high potassium, Gö-6976, an inhibitor of conventional PKC, and PKC-, pseudosubstrate fused to antennapedia peptide (Antp-PKC19,31) increased potassium induced secretion. Similarly, insulin release induced by high glucose for 10 min was enhanced by Gö-6976 and Antp-PKC19,31. However, when islets were stimulated for 60 min with high glucose, both Gö-6976 and Antp-PKC19,31 reduced glucose-induced insulin secretion. Similar results were obtained by transfection of dominant-negative PKC-, using adenovirus vector. Taken together, PKC-, is activated when cells are depolarized by a high concentration of potassium or glucose. Conventional PKC is inhibitory on depolarization-induced insulin secretion per se, but it also augments glucose-induced secretion. [source]


The Initiation of the Microglial Response

BRAIN PATHOLOGY, Issue 1 2000
Hiroyuki Kato
The initial response of microglia to ischemia and ischemia-like conditions was analyzed in situ and in vitro. After sublethal ischemia in situ, microglia appear activated morphologically, but do not express macrophage-like antigens. In contrast, neuronal damage induces full expression of immunomolecules in microglia. Additionally, blood-borne cells readily infiltrate the region of the ischemic core and constitute another source of cells with macrophage-like expression. Thus, it appears that the microglia are the earliest cells to respond to injury, but their response is graded and complicated by the presence of blood-borne immune cells. In vitro ischemia-like conditions caused an irreversible depolarization, ion channel shutdown, and blebbing, indicating that microglia are not equipped to withstand an ischemic insult. Application of ATP alone to microglia produced outward currents and calcium transients and these calcium transients increased when ATP was applied in combination with high potassium. It is known that both outward currents and calcium transients are induced during spreading depression, a feature of focal injury, and this suggests that spreading depression might be one of the initial activators of microglia. [source]