High Mutation Rate (high + mutation_rate)

Distribution by Scientific Domains


Selected Abstracts


Bioenergetics and the epigenome: Interface between the environment and genes in common diseases

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2010
Douglas C. Wallace
Abstract Extensive efforts have been directed at using genome-wide association studies (GWAS) to identify the genes responsible for common metabolic and degenerative diseases, cancer, and aging, but with limited success. While environmental factors have been evoked to explain this conundrum, the nature of these environmental factors remains unexplained. The availability of and demands for energy constitute one of the most important aspects of the environment. The flow of energy through the cell is primarily mediated by the mitochondrion, which oxidizes reducing equivalents from hydrocarbons via acetyl-CoA, NADH + H+, and FADH2 to generate ATP through oxidative phosphorylation (OXPHOS). The mitochondrial genome encompasses hundreds of nuclear DNA (nDNA)-encoded genes plus 37 mitochondrial DNA (mtDNA)-encoded genes. Although the mtDNA has a high mutation rate, only milder, potentially adaptive mutations are introduced into the population through female oocytes. In contrast, nDNA-encoded bioenergetic genes have a low mutation rate. However, their expression is modulated by histone phosphorylation and acetylation using mitochondrially-generated ATP and acetyl-CoA, which permits increased gene expression, growth, and reproduction when calories are abundant. Phosphorylation, acetylaton, and cellular redox state also regulate most signal transduction pathways and activities of multiple transcription factors. Thus, mtDNA mutations provide heritable and stable adaptation to regional differences while mitochondrially-mediated changes in the epigenome permit reversible modulation of gene expression in response to fluctuations in the energy environment. The most common genomic changes that interface with the environment and cause complex disease must, therefore, be mitochondrial and epigenomic in origin. © 2010 Wiley-Liss, Inc. Dev Disabil Res Rev 2010;16:114,119. [source]


Oral lichen planus has a high rate of TP53 mutations.

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2002
A study of oral mucosa in Iceland
Oral squamous cell carcinoma (OSCC) is a world-wide health problem. In addition to external exposure (smoking and alcohol), certain oral lesions may increase the risk of oral cancer (e.g. leukoplakia, erythroplakia, and oral lichen planus). TP53 has been implicated in OSCC, but there are limited studies of mutations in premalignant oral lesions. In this study, 55 samples from OSCC, 47 from hyperkeratotic (HK) oral mucosa, clinically diagnosed as white patches, 48 samples from oral lichen planus (OLP), and 12 biopsies from normal oral mucosa were studied immunohistochemically for expression of TP53 protein. From all the carcinoma samples and selected non-malignant samples showing moderate or strong TP53 protein expression, malignant cells or TP53-positive nuclei were microdissected and screened for mutations in exons 5,8 by constant denaturation gel electrophoresis. Moderate to strong TP53 protein staining was seen in 56% of OSCC, 32% of OLP but only in 13% of HK. All OLP samples showed a characteristic pattern of positive nuclei confined to the basal layer, whereas TP53 staining was seen in suprabasal nuclei in HK. Mutation rate was 11 out of 52 for OSCC, three out of 20 tested for HK and, remarkably, nine out 27 tested for OLP. There was no correlation between TP53 protein staining and TP53 mutations. No associations were found with anatomical sites or disease progression. The unexpectedly high mutation rate of OLP might explain the premalignant potential of this lesion. [source]


ADAPTIVE REPTILE COLOR VARIATION AND THE EVOLUTION OF THE MCIR GENE

EVOLUTION, Issue 8 2004
Erica Bree Rosenblum
Abstract The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation. [source]


Revealing the hidden complexities of mtDNA inheritance

MOLECULAR ECOLOGY, Issue 23 2008
DANIEL JAMES WHITE
Abstract Mitochondrial DNA (mtDNA) is a pivotal tool in molecular ecology, evolutionary and population genetics. The power of mtDNA analyses derives from a relatively high mutation rate and the apparent simplicity of mitochondrial inheritance (maternal, without recombination), which has simplified modelling population history compared to the analysis of nuclear DNA. However, in biology things are seldom simple, and advances in DNA sequencing and polymorphism detection technology have documented a growing list of exceptions to the central tenets of mitochondrial inheritance, with paternal leakage, heteroplasmy and recombination now all documented in multiple systems. The presence of paternal leakage, recombination and heteroplasmy can have substantial impact on analyses based on mtDNA, affecting phylogenetic and population genetic analyses, estimates of the coalescent and the myriad of other parameters that are dependent on such estimates. Here, we review our understanding of mtDNA inheritance, discuss how recent findings mean that established ideas may need to be re-evaluated, and we assess the implications of these new-found complications for molecular ecologists who have relied for decades on the assumption of a simpler mode of inheritance. We show how it is possible to account for recombination and heteroplasmy in evolutionary and population analyses, but that accurate estimates of the frequencies of biparental inheritance and recombination are needed. We also suggest how nonclonal inheritance of mtDNA could be exploited, to increase the ways in which mtDNA can be used in analyses. [source]


Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations

ANIMAL GENETICS, Issue 5 2009
F. Stock
Summary Mitochondrial DNA has been the traditional marker for the study of animal domestication, as its high mutation rate allows for the accumulation of molecular diversity within the time frame of domestic history. Additionally, it is exclusively maternally inherited and haplotypes become part of the domestic gene pool via actual capture of a female animal rather than by interbreeding with wild populations. Initial studies of British aurochs identified a haplogroup, designated P, which was found to be highly divergent from all known domestic haplotypes over the most variable portion of the D-loop. Additional analysis of a large and geographically representative sample of aurochs from northern and central Europe found an additional, separate aurochs haplotype, E. Until recently, the European aurochs appeared to have no matrilinear descendants among the publicly available modern cattle control regions sequenced; if aurochs mtDNA was incorporated into the domestic population, aurochs either formed a very small proportion of modern diversity or had been subsequently lost. However, a haplogroup P sequence has recently been found in a modern sample, along with a new divergent haplogroup called Q. Here we confirm the outlying status of the novel Q and E haplogroups and the modern P haplogroup sequence as a descendent of European aurochs, by retrieval and analysis of cytochrome b sequence data from twenty ancient wild and domesticated cattle archaeological samples. [source]


Y-chromosome biallelic polymorphisms and Native American population structure

ANNALS OF HUMAN GENETICS, Issue 4 2002
M.-C. BORTOLINI
It has been proposed that women had a higher migration rate than men throughout human evolutionary history. However, in a recent study of South American natives using mtDNA restriction fragment polymorphisms and Y-chromosome microsatellites we failed to detect a significant difference in estimates of migration rates between the sexes. As the high mutation rate of microsatellites might affect estimates of population structure, we now examine biallelic polymorphisms in both mtDNA and the Y-chromosome. Analyses of these markers in Amerinds from North, Central and South America agree with our previous findings in not supporting a higher migration rate for women in these populations. Furthermore, they underline the importance of genetic drift in the evolution of Amerinds and suggest the existence of a North to South gradient of increasing drift in the Americas. [source]


STABILITY AND EVOLUTION OF OVERLAPPING GENES

EVOLUTION, Issue 3 2000
David C. Krakauer
Abstract., When the same sequence of nucleotides codes for regions of more than one functional polypeptide, this sequence contains overlapping genes. Overlap is most common in rapidly evolving genomes with high mutation rates such as viruses, bacteria, and mitochondria. Overlap is thought to be important as: (1) a means of compressing a maximum amount of information into short sequences of structural genes; and (2) as a mechanism for regulating gene expression through translational coupling of functionally related polypeptides. The stability of overlapping codes is examined in relation to the information cost of overlap and the mutation rate of the genome. The degree of overlap in a given population will tend to become monomorphic. Evolution toward partial overlap of genes is shown to depend on a convex cost function of overlap. Overlap does not evolve when expression of overlapping genes is mutually exclusive and produced by rare mutations to the wild-type genome. Assuming overlap increases coupling between functionally related genes, the conditions favoring overlap are explored in relation to the kinetics of gene activation and decay. Coupling is most effective for genes in which the gene overlapping at its 5'end (leading gene) decays rapidly, while the gene overlapping at the 3'end (induced gene) decays slowly. If gene expression can feedback on itself (autocatalysis), then high rates of activation favor overlap. [source]


Microsatellite instability and its relevance to cutaneous tumorigenesis

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 5 2002
Mahmoud R. Hussein
Increasing evidence suggests that human tumors sequentially accumulate multiple mutations that cannot be explained by the low rates of spontaneous mutations in normal cells (2,3 mutations/cell). The mathematical models estimate that for the solid tumors to develop, as many as 6,12 mutations are required in each tumor cell. Therefore, to account for such high mutation rates, it is proposed that tumor cells are genetically unstable, i.e. they have genome-wide mutations at short repetitive DNA sequences called microsatellites. Microsatellite repeats are scattered throughout the human genome, primarily in the non-coding regions, and can give rise to variants with increased or reduced lengths, i.e. microsatellite instability (MSI). This instability has been reported in an increasing number of cutaneous tumors including: melanocytic tumors, basal cell carcinomas and primary cutaneous T-cell lymphomas. Moreover, MSI has been observed in skin tumors arising in the context of some hereditary disorders such as Muir,Torre syndrome, Von Recklinghausen's disease and disseminated superficial porokeratosis. While MSI in some of these disorders reflects underlying DNA replication errors, the mechanism of instability in others is still unknown. Thus far, MSI is considered to be a distinct tumorigenic pathway that reveals surprising versatility. The ramifications for cutaneous neoplasms warrant further investigation. [source]


Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis

MOLECULAR ECOLOGY, Issue 9 2002
Arnaud Estoup
Abstract Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints. [source]


Evolution of mutation rates in bacteria

MOLECULAR MICROBIOLOGY, Issue 4 2006
Erick Denamur
Summary Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance. [source]