Home About us Contact | |||
High Migration Rates (high + migration_rate)
Selected AbstractsGrain aphid population structure: no effect of fungal infections in a 2-year field study in DenmarkAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2008A. B. Jensen Abstract 1,Sitobion avenae (F.) is a serious pest in Danish cereal crops. To understand the population genetic structure, aphids were sampled in seven different winter wheat (Triticum sativum Lamarck) fields throughout Denmark. The aphids were genotyped with seven microsatellite markers. In total, 2075 aphids were collected and 1203 of these were genotyped. 2,The Danish S. avenae populations displayed very high genotypic diversity, high percentages of unique genotypes and low linkage disequilibria; this is likely to be a result of genetic recombination encompassed by their holocyclic lifestyle. The populations showed very limited differentiation and no sign of isolation by distance. Almost all the genetic variation was ascribed within the populations rather than between populations, probably due to a high migration rate at approximate 10% per generation. 3,Seasonal changes in clonal diversity and distribution of asexual summer generations of S. avenae within the infestation period in a single winter wheat field were followed over two consecutive years by weekly sampling from 60 plots each of 20 × 20 m. Clonal diversity was high in all samples with no dominant clonal lineages and no significant difference in the genotypic diversity between weeks or between years. However, a temporal genetic differentiation effect, throughout the infestation, suggests that selective factors or high temporal migration play an important role in shaping the genetic structure S. avenae. 4,Analyses of fungal infected and uninfected aphids were performed to test whether some clonal linage were more often infected by fungi from the Entomophthorales under field conditions. In total, 54 progeny from aphids with Entomophthorales were genotyped and compared with 422 uninfected aphid genotypes. The Entomophthorales-infected aphid genotypes did not cluster out together, suggesting that these fungal pathogens did not affect the population differentiation or clonal distribution of S. avenae in a Danish agroecosystem. 5,Our findings indicate that S. avenae populations can be controlled using conservation biological control [source] EFFECTS OF MIGRATION ON THE GENETIC COVARIANCE MATRIXEVOLUTION, Issue 10 2007Frédéric Guillaume In 1996, Schluter showed that the direction of morphological divergence of closely related species is biased toward the line of least genetic resistance, represented by gmax, the leading eigenvector of the matrix of genetic variance,covariance (the G -matrix). G is used to predict the direction of evolutionary change in natural populations. However, this usage requires that G is sufficiently constant over time to have enough predictive significance. Here, we explore the alternative explanation that G can evolve due to gene flow to conform to the direction of divergence between incipient species. We use computer simulations in a mainland,island migration model with stabilizing selection on two quantitative traits. We show that a high level of gene flow from a mainland population is required to significantly affect the orientation of the G -matrix in an island population. The changes caused by the introgression of the mainland alleles into the island population affect all aspects of the shape of G (size, eccentricity, and orientation) and lead to the alignment of gmax with the line of divergence between the two populations' phenotypic optima. Those changes decrease with increased correlation in mutational effects and with a correlated selection. Our results suggest that high migration rates, such as those often seen at the intraspecific level, will substantially affect the shape and orientation of G, whereas low migration (e.g., at the interspecific level) is unlikely to substantially affect the evolution of G. [source] Estimated migration rates under scenarios of global climate changeJOURNAL OF BIOGEOGRAPHY, Issue 7 2002Jay R. Malcolm Aim Greenhouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 -doubled climatic forcing. Location Global. Methods Migration distances were calculated between grid cells of future biome type x and nearest same-biome-type cells in the current climate. In `base-case' calculations, we assumed that 2 × CO2 climate forcing would occur in 100 years, we used ten biome types and we measured migration distances as straight-line distances ignoring water barriers and human development. In sensitivity analyses, we investigated different time periods of 2 × CO2 climate forcing, more narrowly defined biomes and barriers because of water bodies and human development. Results In the base-case calculations, average migration rates varied significantly according to the GVM used (BIOME3 vs. MAPSS), the age of the GCM (older- vs. newer-generation GCMs), and whether or not GCMs included sulphate cooling or CO2 fertilization effects. However, high migration rates (, 1000 m year,1) were relatively common in all models, consisting on average of 17% grid cells for BIOME3 and 21% for MAPSS. Migration rates were much higher in boreal and temperate biomes than in tropical biomes. Doubling of the time period of 2 × CO2 forcing reduced these areas of high migration rates to c. 12% of grid cells for both BIOME3 and MAPSS. However, to obtain migration rates in the Boreal biome that were similar in magnitude to those observed for spruce when it followed the retreating North American Glacier, a radical increase in the period of warming was required, from 100 to >1000 years. A reduction in biome area by an order of magnitude increased migration rates by one to three orders of magnitude, depending on the GVM. Large water bodies and human development had regionally important effects in increasing migration rates. Main conclusions In conclusion, evidence from coupled GCMs and GVMs suggests that global warming may require migration rates much faster than those observed during post-glacial times and hence has the potential to reduce biodiversity by selecting for highly mobile and opportunistic species. Several poorly understood factors that are expected to influence the magnitude of any such reduction are discussed, including intrinsic migrational capabilities, barriers to migration, the role of outlier populations in increasing migration rates, the role of climate in setting range limits and variation in species range sizes. [source] World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeusMOLECULAR ECOLOGY, Issue 10 2010DAVID S. PORTNOY Abstract The sandbar shark, Carcharhinus plumbeus, is a large, cosmopolitan, coastal species. Females are thought to show philopatry to nursery grounds while males potentially migrate long distances, creating an opportunity for male-mediated gene flow that may lead to discordance in patterns revealed by mitochondrial DNA (mtDNA) and nuclear markers. While this dynamic has been investigated in elasmobranchs over small spatial scales, it has not been examined at a global level. We examined patterns of historical phylogeography and contemporary gene flow by genotyping 329 individuals from nine locations throughout the species' range at eight nuclear microsatellite markers and sequencing the complete mtDNA control region. Pairwise comparisons often resulted in fixation indices and divergence estimates of greater magnitude using mtDNA sequence data than microsatellite data. In addition, multiple methods of estimation suggested fewer populations based on microsatellite loci than on mtDNA sequence data. Coalescent analyses suggest divergence and restricted migration among Hawaii, Taiwan, eastern and western Australia using mtDNA sequence data and no divergence and high migration rates, between Taiwan and both Australian sites using microsatellite data. Evidence of secondary contact was detected between several localities and appears to be discreet in time rather than continuous. Collectively, these data suggest complex spatial/temporal relationships between shark populations that may feature pulses of female dispersal and more continuous male-mediated gene flow. [source] Contrasting mtDNA diversity and population structure in a direct-developing marine gastropod and its trematode parasitesMOLECULAR ECOLOGY, Issue 22 2009DEVON B. KEENEY Abstract The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus (n = 330) and two of its trematode parasites, Maritrema novaezealandensis (n = 269) and Philophthalmus sp. (n = 246), using cytochrome c oxidase subunit I gene (COI) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits. [source] |