Home About us Contact | |||
High Light (high + light)
Terms modified by High Light Selected AbstractsACCUMULATION OF OLEIC ACID IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) UNDER NITROGEN STARVATION OR HIGH LIGHT IS CORRELATED WITH THAT OF ASTAXANTHIN ESTERS1JOURNAL OF PHYCOLOGY, Issue 2 2002Mirash Zhekisheva The chlorophyte Haematococcus pluvialis accumulates large quantities of astaxanthin under stress conditions. Under either nitrogen starvation or high light, the production of each picogram of astaxanthin was accompanied by that of 5 or 3,4 pg of fatty acids, respectively. In both cases, the newly formed fatty acids, consisting mostly of oleic (up to 34% of fatty acids in comparison with 13% in the control), palmitic, and linoleic acids, were deposited mostly in triacylglycerols. Furthermore, the enhanced accumulation of oleic acid was linearily correlated with that of astaxanthin. Astaxanthin, which is mostly monoesterified, is deposited in globules made of triacylglycerols. We suggest that the production of oleic acid-rich triacylglycerols on the one hand and the esterification of astaxanthin on the other hand enable the oil globules to maintain the high content of astaxanthin esters. [source] Antioxidative Responses of Two Marine Microalgae During Acclimation to Static and Fluctuating Natural UV RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2009Paul J. Janknegt Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400,700 nm), static PAR + UVR (280,700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissflogii and Dunaliella tertiolecta were exposed outdoors for a maximum of 7 days. Dynamic irradiance was established by computer controlled vertical movement of 2 L bottles in a water filled basin. Immediate (<24 h), short-term (1,3 days) and long-term (4,7 days) photoacclimation was followed for antioxidants (superoxide dismutase, ascorbate peroxidase and glutathione cycling), growth and pigment pools. Changes in UVR sensitivity during photoacclimation were monitored by measuring UVR-induced inhibition of carbon assimilation under standardized UV conditions using an indoor solar simulator. Both species showed immediate antioxidant responses due to their transfer to the outdoor conditions. Furthermore, upon outdoor exposure, carbon assimilation and growth rates were reduced in both species compared with initial conditions; however, these effects were most pronounced in D. tertiolecta. Outdoor UV exposure did not alter antioxidant levels when compared with PAR-only controls in both species. In contrast, growth was significantly affected in the static UVR cultures, concurrent with significantly enhanced UVR resistance. We conclude that antioxidants play a minor role in the reinforcement of natural UVR resistance in T. weissflogii and D. tertiolecta. [source] High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summerFEMS MICROBIOLOGY ECOLOGY, Issue 2 2007Laurence Garczarek Abstract Natural populations of the marine cyanobacterium Prochlorococcus exist as two main ecotypes, inhabiting different layers of the ocean's photic zone. These so-called high light- (HL-) and low light (LL-) adapted ecotypes are both physiologically and genetically distinct. HL strains can be separated into two major clades (HLI and HLII), whereas LL strains are more diverse. Here, we used several molecular techniques to study the genetic diversity of natural Prochlorococcus populations during the Prosope cruise in the Mediterranean Sea in the summer of 1999. Using a dot blot hybridization technique, we found that HLI was the dominant HL group and was confined to the upper mixed layer. In contrast, LL ecotypes were only found below the thermocline. Secondly, a restriction fragment length polymorphism analysis of PCR-amplified pcb genes (encoding the major light-harvesting proteins of Prochlorococcus) suggested that there were at least four genetically different ecotypes, occupying distinct but overlapping light niches in the photic zone. At comparable depths, similar banding patterns were observed throughout the sampled area, suggesting a horizontal homogenization of ecotypes. Nevertheless, environmental pcb gene sequences retrieved from different depths at two stations proved all different at the nucleotide level, suggesting a large genetic microdiversity within those ecotypes. [source] Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlingsFUNCTIONAL ECOLOGY, Issue 2 2000M. B. Walters Abstract 1.,Does enhanced whole-plant CO2 exchange in moderately low to high light occur at the cost of greater CO2 loss rates at very-low light levels? We examined this question for first-year seedlings of intolerant Populus tremuloides and Betula papyrifera, intermediate Betula alleghaniensis, and tolerant Ostrya virginiana and Acer saccharum grown in moderately low (7·3% of open-sky) and low (2·8%) light. We predicted that, compared with shade-tolerant species, intolerant species would have characteristics leading to greater whole-plant CO2 exchange rates in moderately low to high light levels, and to higher CO2 loss rates at very-low light levels. 2.,Compared with shade-tolerant A. saccharum, less-tolerant species grown in both light treatments had greater mass-based photosynthetic rates, leaf, stem and root respiration rates, leaf mass:plant mass ratios and leaf area:leaf mass ratios, and similar whole-plant light compensation points and leaf-based quantum yields. 3.,Whole-plant CO2 exchange responses to light (0·3,600 µmol quanta m,2 s,1) indicated that intolerant species had more positive CO2 exchange rates at all but very-low light (< 15 µmol quanta m,2 s,1). In contrast, although tolerant A. saccharum had a net CO2 exchange disadvantage at light > 15 µmol quanta m,2 s,1, its lower respiration resulted in lower CO2 losses than other species at light < 15 µmol quanta m,2 s,1. 4.,Growth scaled closely with whole-plant CO2 exchange characteristics and especially with integrated whole-plant photosynthesis (i.e. leaf mass ratio × in situ leaf photosynthesis). In contrast, growth scaled poorly with leaf-level quantum yield, light compensation point, and light-saturated photosynthetic rate. 5.,Collectively these patterns indicated that: (a) no species was able to both minimize CO2 loss at very-low light (i.e. < 15 µmol quanta m,2 s,1) and maximize CO2 gain at higher light (i.e. > 15 µmol quanta m,2 s,1), because whole-plant respiration rates were positively associated with whole-plant photosynthesis at higher light; (b) shade-intolerant species possess traits that maximize whole-plant CO2 exchange (and thus growth) in moderately low to high light levels, but these traits may lead to long-term growth and survival disadvantages in very-low light (< 2·8%) owing, in part, to high respiration. In contrast, shade-tolerant species may minimize CO2 losses in very-low light at the expense of maximizing CO2 gain potential at higher light levels, but to the possible benefit of long-term survival in low light. [source] Abiotic constraints on the establishment of Quercus seedlings in grasslandGLOBAL CHANGE BIOLOGY, Issue 2 2003Brett T. Danner Abstract High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first-year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland-forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long-term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late-season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present-day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue. [source] Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditionsAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009K. B. Mantlana Abstract C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration and leaf-to-air vapour pressure deficit gradient (Dl). Digitaria eriantha showed the largest above- and below-ground biomass, high efficiency in carbon gain under light-limiting conditions, high water use efficiency (WUE) and strong stomatal sensitivity to Dl (P = 0.002; r2 = 0.5). Panicum repens had a high aboveground biomass and attained high light saturated photosynthetic rates (Asat, 47 ,mol m,2 s,1), stomatal conductance, (gsat, 0.25 mol m,2 s,1) at relatively high WUE. Eragrostis lehmanniana had almost half the biomass of other species, and had similar Asat and gsat but were attained at lower WUE than the other species. This species also showed the weakest stomatal response to Dl (P = 0.19, r2 = 0. 1). The potential ecological significance of the contrasting patterns of biomass allocation and variations in gas exchange parameters among the species are discussed. Résumé On a fait pousser des espèces herbeuses de savane de type C4, Digitaria eriantha, Eragrostis lehmanniana et Panicum repens, dans des conditions optimales dans le but de caractériser l'allocation de leur biomasse aérienne et racinaire et la réponse de leur échange gazeux à des changements d'intensité de la lumière, de concentrations de CO2, et à un gradient déficitaire (Dl) de pression de vapeur feuille-air. D. eriantha montrait la plus grande biomasse aérienne et racinaire, une grande efficience de l'assimilation de carbone dans des conditions de luminosité limitée, une grande efficience d'utilisation de l'eau (WUE) et une forte sensibilité des stomates à Dl (P = 0,002; r2 = 0,5). P. repens avait une grande biomasse aérienne et atteignait des taux photosynthétiques élevés en lumière saturée (Asat, 47 ,mol m,2 s,1), et une conductance stomatique (gsat 0.25 mol m,2 s,1) à une WUE relativement élevée. E. lehmanniana avait une biomasse qui était presque la moitié de celle des autres espèces et avait un Asat et un gsat similaires mais qui étaient atteints à une WUE plus basse que les autres espèces. Cette espèce montrait aussi la plus faible réponse stomatique àDl (P = 0,19, r2 = 0,1). L'on discute de la signification écologique potentielle de ces schémas contrastés d'allocations de biomasse et des variations des paramètres des échanges gazeux entre les espèces. [source] Response of recruitment to light availability across a tropical lowland rain forest communityJOURNAL OF ECOLOGY, Issue 6 2009Nadja Rüger Summary 1. ,Many hypotheses about species coexistence involve differential resource use and trade-offs in species' life-history traits. Quantifying resource use across most species in diverse communities, although, has seldom been attempted. 2. ,We use a hierarchical Bayesian approach to quantify the light dependence of recruitment in 263 woody species in a 50-ha long-term forest census plot in Panama. Data on sapling recruitment were obtained using the 1985,1990 and 1990,1995 census intervals. Available light was estimated for each recruit from yearly censuses of canopy density. 3. ,We use a power function (linear log,log relationship) to model the light effect on recruitment. Different responses of recruitment to light are expressed by the light effect parameter b. The distribution of b had a central mode at 0.8, suggesting that recruitment of many species responds nearly linearly to increasing light. 4. ,Nearly every species showed increases in recruitment with increasing light. Just nine species (3%) had recruitment declining with light, while 198 species (75%) showed increasing recruitment in both census intervals. Most of the increases in recruitment were decelerating, i.e. the increase was less at higher light (b < 1). In the remaining species, the response to light varied between census intervals (24 species) or species did not have recruits in both intervals (41 species). 5. ,Synthesis. Nearly all species regenerate better in higher light, and recruitment responses to light are spread along a continuum ranging from modest increase with light to a rather strict requirement for high light. These results support the hypothesis that spatio-temporal variation in light availability may contribute to the diversity of tropical tree species by providing opportunities for niche differentiation with respect to light requirements for regeneration. [source] Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forestJOURNAL OF ECOLOGY, Issue 4 2009Georges Kunstler Summary 1A trade-off between growth in high-light and survival in low-light of species is often proposed as a key mechanism underpinning the dynamics of trees in forest communities. Yet, growth and survival are known to depend on plant size and few studies have analysed how this trade-off can vary between juvenile life stages and the potential consequences of the trade-off for the differences in regeneration rate between species in mixed forests. 2We quantified growth and mortality for two different juvenile life stages , seedlings and saplings , of seven tree species common in temperate rain forests in New Zealand using data from field studies. We found strong evidence that the ranking of species for survival in shade and growth in full light was affected by size. There was a trade-off between seedling survival in low light and sapling height growth in high light, but no trade-offs were observed when considering other combinations of life stages (seedling growth vs. seedling survival, seedling growth vs. sapling survival, or sapling growth vs. sapling survival). 3We ran simulations with an individual-based forest dynamics model , SORTIE/NZ , to explore how the trade-off drives the differences in tree species regeneration success in gaps vs. under closed forest conditions. These simulations indicate that because species' ranks in shade tolerance varied with life stage, regeneration success was not predicted from knowledge of tree performance at a single life stage. For instance, high-light sapling growth was a strong determinant of regeneration success in forest gaps, but seedling growth was also influential. Under closed forest, regeneration success was primarily limited by low-light mortality at the seedling stage, but seedling growth and sapling survival were also influential. 4Synthesis. Growth-survival trade-offs can be strongly affected by the size of the individual analysed, resulting in completely different rankings of the shade tolerance of species across different juvenile life stages. Performance of both seedlings and saplings influenced regeneration success, highlighting the need to consider growth-survival trade-offs and the shade-tolerance strategies of tree species over a large range of juvenile sizes. [source] Greater capacity for division of labour in clones of Fragaria chiloensis from patchier habitatsJOURNAL OF ECOLOGY, Issue 3 2007SERGIO R. ROILOA Summary 1Unlike non-clonal plants, clonal plants can develop a division of labour in which connected ramets specialize to acquire different, locally abundant resources. This occurs as a plastic response to a patchy environment where two resources tend not to occur together and different ramets experience high availabilities of different resources. We hypothesized that if division of labour is an important advantage of clonal growth in such environments in nature, then clones from habitats where resource availabilities are negatively associated should show a greater capacity for division of labour than clones from habitats where resource availabilities are more uniform. 2To test this, we collected clones of Fragaria chiloensis from sand dune and grassland sites in each of three regions of the central coast of California, grew pairs of connected or severed ramets under low light and high N or under high light and low N, and measured leaf area, chlorophyll content and final dry mass. Given that previous work has indicated that high availabilities of light and N show a stronger tendency not to occur together in the dune than in the grassland sites, we expected that clones from dunes would show greater capacity for division of labour than clones from grasslands. 3Clones from dunes showed a greater capacity than clones from grasslands to specialize for acquisition of abundant N via high proportional mass of roots. Clones from the two types of habitats showed similar capacity to specialize for acquisition of abundant light via high leaf area and chlorophyll content of leaves. Specialization via leaf area and chlorophyll content took place mainly within the first half of the 60-day experiment. 4These results provide evidence that division of labour in a clonal plant has been selected for in natural habitats where high levels of different resources tend to be spatially separated. Results also show that division of labour can occur, not just via allocation of mass, but also via physiological traits, and that both morphological and physiological specialization can take place within a few weeks. 5Clonal plants dominate many habitats and include many highly invasive species. Division of labour is one of the most striking potential advantages of clonal growth, and is a remarkable instance of phenotypic plasticity in plants. This study further suggests that division of labour in clonal plants is an instance of adaptive plasticity and could therefore play a part in their widespread ecological success. [source] Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forestsJOURNAL OF ECOLOGY, Issue 2 2003Lee E. Frelich Summary 1Although it is well established that nitrogen and light play major roles in structuring plant communities across the landscape, it is not as clear how they structure communities within forest stands. Virtually nothing is known about within-stand structure of understorey communities of herbs and small shrubs in near-boreal forests. 2We tested the hypothesis that fine-scale (5,20 m) variability in N and light structure forest-floor plant communities in two old-growth mixed Pinus resinosa and Pinus strobus forests in north-eastern Minnesota, USA. 3In each forest, all trees > 1.4 m tall were mapped on a 0.75,1.0 ha area. A grid of subplots 5,10 m apart was established (total n = 147), and N mineralization (µg g,1 soil day,1), soil depth (cm), light (% canopy openness), and percentage cover of all herbs and small shrubs were measured on each subplot. 4Cluster analysis showed that the dominant understorey species fall into three groups. Group 1 is unrelated to N and light, and is negatively associated with a midstorey of the small tree Acer rubrum and the most abundant tall shrub Corylus cornuta. Group 2 reaches maximum abundance in places (mostly gaps) with relatively high light, but is unrelated to within-stand variation in N availability. Group 3 consists of a single species, Aster macrophyllus, and reaches maximum abundance in areas with low N availability and low abundance of Corylus, but higher than average abundance of P. strobus and Betula papyrifera overstorey trees. 5N and light have a moderate influence on understorey plant community structure. The plant species do arrange themselves along N and light gradients, but the gradients are likely to be too narrow to allow the degree of differentiation seen at the landscape level. Spatial patterning of the species groups is probably influenced by other factors, including disturbance history, chance and neighbourhood effects such as clonal reproduction. [source] ACCUMULATION OF OLEIC ACID IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) UNDER NITROGEN STARVATION OR HIGH LIGHT IS CORRELATED WITH THAT OF ASTAXANTHIN ESTERS1JOURNAL OF PHYCOLOGY, Issue 2 2002Mirash Zhekisheva The chlorophyte Haematococcus pluvialis accumulates large quantities of astaxanthin under stress conditions. Under either nitrogen starvation or high light, the production of each picogram of astaxanthin was accompanied by that of 5 or 3,4 pg of fatty acids, respectively. In both cases, the newly formed fatty acids, consisting mostly of oleic (up to 34% of fatty acids in comparison with 13% in the control), palmitic, and linoleic acids, were deposited mostly in triacylglycerols. Furthermore, the enhanced accumulation of oleic acid was linearily correlated with that of astaxanthin. Astaxanthin, which is mostly monoesterified, is deposited in globules made of triacylglycerols. We suggest that the production of oleic acid-rich triacylglycerols on the one hand and the esterification of astaxanthin on the other hand enable the oil globules to maintain the high content of astaxanthin esters. [source] Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditionsMOLECULAR MICROBIOLOGY, Issue 3 2004Yukari Takahashi Summary The cmp operon of Synechococcus sp. strain PCC 7942, encoding a high-affinity bicarbonate transporter, is induced under low CO2 conditions by a LysR family protein CmpR. CmpR was found to be required also for induction of the operon by transfer of the cells from low-light to high-light conditions, indicating involvement of a common mechanism in the high-light- and low-CO2 -responsive regulation. Expression of the high-light inducible genes psbAII and psbAIII, on the other hand, was found to be induced also by low-CO2 conditions. A single promoter was responsible for the high-light and low-CO2 induction of each of psbAII and psbAIII, suggesting involvement of a common regulatory mechanism in the light and CO2 responses of the psbA genes. CmpR was, however, not required for the induction of psbAII and psbAIII, indicating the presence of multiple mechanisms for induction of genes under high-light and low-CO2 conditions. The CmpR-deficient mutant nevertheless showed lower levels of the psbAII and psbAIII transcripts than the wild-type strain under all the light and CO2 conditions examined. Gel shift assays showed that CmpR binds to the enhancer elements of psbAII and psbAIII, through specific interaction with a sequence signature conforming to the binding motif of similar LysR family proteins. These findings showed that CmpR acts as a trans -acting factor that enhances transcription of the photosystem II genes involved in acclimation to high light, revealing a complex network of gene regulation in the cyanobacterium. [source] The giant kelp Macrocystis pyrifera presents a different nonphotochemical quenching control than higher plantsNEW PHYTOLOGIST, Issue 3 2007Ernesto García-Mendoza Summary ,,Here the mechanisms involved in excitation energy dissipation of Macrocystis pyrifera were characterized to explain the high nonphotochemical quenching of chlorophyll a (Chla) fluorescence (NPQ) capacity of this alga. ,,We performed a comparative analysis of NPQ and xanthophyll cycle (XC) activity in blades collected at different depths. The responses of the blades to dithiothreitol (DTT) and to the uncoupler NH4Cl were also assayed. ,,The degree of NPQ induction was related to the amount of zeaxanthin synthesized in high light. The inhibition of zeaxanthin synthesis with DTT blocked NPQ induction. A slow NPQ relaxation upon the addition of NH4Cl, which disrupts the transthylakoid proton gradient, was detected. The slow NPQ relaxation took place only in the presence of de-epoxidated XC pigments and was related to the epoxidation of zeaxanthin. ,,These results indicate that in M. pyrifera, in contrast to higher plants, the transthylakoid proton gradient alone does not induce NPQ. The role of this gradient seems to be related only to the activation of the violaxanthin de-epoxidase enzyme. [source] Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and PsychotriaNEW PHYTOLOGIST, Issue 2 2003Damond A. Kyllo Summary ,,Root hydraulic conductance (Kr) was measured for five understory shrub species of the neotropical moist forest to determine the effects of arbuscular mycorrhizas (AM) for both carbon-rich and carbon-limited host plants. ,,Kr was measured using a high pressure flow meter (HPFM) for potted plants grown in a factorial combination of AM fungi (presence/absence) and light (3.5 and 30% of full sun, low/high). ,,AM colonization improved Kr for the more shade-tolerant species plants when growing in low light. By contrast, water uptake efficiency of the light-demanding species was significantly decreased by AM fungi in high light. Regardless of AM colonization, light-demanding species had a lower capacity than shade-tolerant species to meet transpirational demands, and they allocated substantially more to fine root production relative to leaf area when colonized. ,,The differential effects of AM colonization and light on a species' root hydraulic conductance in relation to phylogeny and light adaptation demonstrate that AM fungi may be critical in determining early plant succession and community composition not only due to effects on nutrient uptake, but on water uptake as well. [source] Effects of CO2 and light on tree phytochemistry and insect performanceOIKOS, Issue 2 2000Jep Agrell Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides; paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387±8 ,L/L) and elevated (696±2 ,L/L) levels of atmospheric CO2, with low and high light availability (375 and 855 ,mol×m,2×s,1 at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white-marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage, and complementary short-term (fourth instar) feeding trials were conducted with insects fed detached leaves. Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water, starch and nitrogen). For all species, enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen, but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively. The long-term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general, CO2 effects were pronounced in high light and decreased along the gradient aspen birch maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors, with increased development time, and reduced pupal mass. For maple-fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and low light maple. This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light-dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early-successional species primarily under high light conditions, and of late-successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future. [source] PAR and UV Effects on Vertical Migration and Photosynthesis in Euglena gracilis,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007Peter Richter Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m,2, UV-A 32.6 W m,2, UV-B 1.9 W m,2). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again. [source] Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOXPHYSIOLOGIA PLANTARUM, Issue 1 2010Challabathula Dinakar The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O2 evolution and O2 uptake in mesophyll protoplasts of pea pre-incubated under different light intensities. Under HL (3000 µmol m,2 s,1), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO3 -dependent O2 evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O2 uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO3 -dependent O2 evolution or p -benzoquinone (BQ)-dependent O2 evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model. [source] Red ,Anjou' pear has a higher photoprotective capacity than green ,Anjou'PHYSIOLOGIA PLANTARUM, Issue 3 2008Pengmin Li Photoprotective function of anthocyanins along with xanthophyll cycle and antioxidant system in fruit peel was investigated in red ,Anjou' vs green ,Anjou' pear (Pyrus communis) during fruit development and in response to short-term exposure to high light. The sun-exposed peel of red ,Anjou' had higher maximum quantum yield of photosystem II (FV/FM) than that of green ,Anjou' and both the sun-exposed peel and the shaded peel of red ,Anjou' had smaller decreases in FV/FM after 2-h high light (photon flux density of 1500 ,mol m,2 s,1) treatment than those of green ,Anjou'. At the middle and late developmental stages, the xanthophyll cycle pool size on a chlorophyll basis, the activity of superoxide dismutase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and the level of reduced ascorbate and total ascorbate pool in the sun-exposed peel were either the same or lower in red ,Anjou' than in green ,Anjou', whereas the xanthophyll cycle pool size on a chlorophyll basis and the activity of APX, catalase, MDAR, DHAR and GR in the shaded peel were higher in red ,Anjou' than in green ,Anjou'. It is concluded that red ,Anjou' has a higher photoprotective capacity in both the sun-exposed peel and the shaded peel than green ,Anjou'. While the higher anthocyanin concentration along with the larger xanthophyll cycle pool size and the higher activity of some antioxidant enzymes may collectively contribute to the higher photoprotective capacity in the shaded peel of red ,Anjou', the higher photoprotective capacity in the sun-exposed peel of red ,Anjou' is mainly attributed to its higher anthocyanin concentration. [source] Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thalianaPHYSIOLOGIA PLANTARUM, Issue 3 2008Ingo Voss Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds -T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions. [source] The Effect of Irradiance on Carboxylating/Decarboxylating Enzymes and Fumarase Activities in Mesembryanthemum crystallinum L. Exposed to Salinity StressPLANT BIOLOGY, Issue 1 2001Z. Miszalski Abstract: In Mesembryanthemum crystallinum plants, treated for 9 days with 0.4 M NaCl at low light intensities (80 - 90 or 95 - 100 ,E m -2 s -1; , = 400 - 700 nm), no day/night malate level differences (,malate) were detected. At high light (385 - 400 ,E m -2 s -1) strong stimulation of PEPC activity, accompanied by a ,malate of 11.3 mM, demonstrated the presence of CAM metabolism. This indicates that, to evolve day/night differences in malate concentration, high light is required. Salt treatment at low light induces and increases the activity of NAD- and NADP-malic enzymes by as much as 3.7- and 3.9-fold, while at high light these values reach 6.4- and 17.7-fold, respectively. The induction of activity of both malic enzymes and PEPC (phospoenolpyruvate carboxylase) take place before ,malate is detectable. An increase in SOD (superoxide dismutase) was observed in plants cultivated at high light in both control and salt-treated plants. However, in salt-treated plants this effect was more pronounced. Carboxylating and decarboxylating enzymes seem to be induced by a combination of different signals, i.e., salt and light intensity. Plants performing CAM, after the decrease of activity of both the decarboxylating enzymes at the beginning of the light period, showed an increase in these enzymes in darkness when the malate pool reaches higher levels. In CAM plants the activity of fumarase (Krebs cycle) is much lower than that in C3 plants. The role of mitochondria in CAM plants is discussed. [source] Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leavesPLANT CELL & ENVIRONMENT, Issue 3 2010WATARU YAMORI ABSTRACT Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol,1 cyt f s,1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol,1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C. [source] Distribution, developmental and stress responses of antioxidant metabolism in MalusPLANT CELL & ENVIRONMENT, Issue 10 2004M. W. DAVEY ABSTRACT A comprehensive study was carried out to examine the interactions between the two major hydrophilic antioxidants l -ascorbate (vitamin C, l -AA), and glutathione (, -glutamyl cysteinylglycine, GSH), and other antioxidant pools in tissues of Malus, to identify factors affecting steady-state cellular concentrations. We show that in Malus, each tissue type has a characteristic and different l -AA/GSH ratio and that in fruit, exocarp (epidermal) tissue acclimated to high light has higher l -AA levels but lower GSH levels than shaded (green) areas. Maturing seeds were characterized by the highest concentrations of GSH and a highly oxidized l -AA pool. It is demonstrated that fruit seeds are capable of l -AA biosynthesis, but that this occurs exclusively by means of the Smirnoff,Wheeler pathway. By contrast, foliar tissue was also able to synthesize l -AA using uronic acid substrates. Unlike the fruit of some other plant species however, the remaining fruit tissues are incapable of de novol -AA biosynthesis. The observed differences in the steady-state concentrations of l -AA and GSH and the capacity to withstand stress in fruit, were also independent of the rates of uptake of photosynthate or of l -AA, but were correlated with the protective effect provided by phenolic compounds in these tissues. During development and maturation, l -AA and GSH levels in apple fruit declined steadily while foliar levels remained essentially constant throughout. However there was no apparent relationship between the free sugar contents of the fruit and antioxidant concentrations. [source] Would transformation of C3 crop plants with foreign Rubisco increase productivity?PLANT CELL & ENVIRONMENT, Issue 2 2004A computational analysis extrapolating from kinetic properties to canopy photosynthesis ABSTRACT Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (,) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high , have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and , exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing , result in increased leaf and canopy photosynthesis? A steady-state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose-1,5-bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in , will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in , on Rubisco-limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and ,, the simulations showed that a decrease, not an increase, in , increases Rubisco-limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light-limited and light-saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average , found in C3 terrestrial plants is supra-optimal for the present atmospheric [CO2] of 370 µmol mol,1, but would be optimal for a CO2 concentration of around 200 µmol mol,1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal , would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and ,, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well-defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher , or higher kcc were successfully expressed in C3 plants. [source] Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gainPLANT CELL & ENVIRONMENT, Issue 8 2001J. R. Evans Abstract Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m,2 s,1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high-light-grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light-saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low-light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low-light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important. [source] Effects of elevated ozone and low light on diurnal and seasonal carbon gain in sugar maplePLANT CELL & ENVIRONMENT, Issue 7 2001M. A. Topa Abstract The long-term interactive effects of ozone and light on whole-tree carbon balance of sugar maple (Acer saccharum Marsh.) seedlings were examined, with an emphasis on carbon acquisition, foliar partitioning into starch and soluble sugars, and allocation to growth. Sugar maple seedlings were fumigated with ambient, 1·7 × ambient and 3·0 × ambient ozone in open-top chambers for 3 years under low and high light (15 and 35% full sunlight, respectively). Three years of ozone fumigation reduced the total biomass of seedlings in the low- and high-light treatments by 64 and 41%, respectively, but had no effect on whole-plant biomass allocation. Ozone had no effect on net photosynthesis until late in the growing season, with low-light seedlings generally exhibiting more pronounced reductions in photosynthesis. The late-season reduction in photosynthesis was not due to impaired stomatal function, but was associated more with accelerated senescence or senescence-like injury. In contrast, the 3·0 × ambient ozone treatment immediately reduced diurnal starch accumulation in leaves by over 50% and increased partitioning of total non-structural carbohydrates into soluble sugars, suggesting that injury repair processes may be maintaining photosynthesis in late spring and early summer at the expense of storage carbon. The results in the present study indicate that changes in leaf-level photosynthesis may not accurately predict the growth response of sugar maple to ozone in different light environments. The larger reduction in seedling growth under low-light conditions suggests that seedlings in gap or closed-canopy environments are more susceptible to ozone than those in a clearing. Similarly, understanding the effects of tropospheric ozone on net carbon gain of a mature tree will require scaling of leaf-level responses to heterogeneous light environments, where some leaves may be more susceptible than others. [source] Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high lightPLANT CELL & ENVIRONMENT, Issue 3 2000Hiroyuki Muraoka ABSTRACT Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non-diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1,A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 ,mol mol,1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ,peak' of diurnal assimilation was 70% greater than that obtained before the ,peak', but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II (,F/Fm,) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ,peak'. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 ,mol m,2 s,1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ,peak', but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non-photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration. [source] Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag dataPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003Myung Hee Nam Abstract We performed comparative proteomic analyses in order to understand the physiological responses of ginseng (Panax ginseng C. A. Meyer) to high light (HL). As a first step, we analyzed the proteins expressed in ginseng leaves. Proteins extracted from leaves were separated by two-dimensional polyacrylamide gel electrophoresis. Protein spots were identified by tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS). We used a ginseng expressed sequence tag (EST) database as well as a nonredundant protein database from NCBI to identify proteins. Eighty-one proteins were identified using the nr protein database, 51 of which were also verified from the ginseng EST database. An additional 66 proteins were identified only from the ginseng EST database. Proteins that function in energy metabolism, protein stabilization, and protection against oxidative stress were abundant. To understand the light responses of ginseng leaves, we studied time dependent changes in expressed proteins produced by 0,4 h of HL exposure. Six HL-responsive proteins were identified: three proteins were up-regulated (cytosolic small heat-shock protein, cytosolic ascorbate peroxidase, and putative major latex-like protein) and three proteins were down-regulated (Rieske Fe/S protein, putative 3-beta hydroxysteroid dehydrogenase/isomerase-like protein, and oxygen-evolving enhancer-like protein). Our results show that the ginseng EST database combined with ESI Q-TOF MS analysis can be used to identify ginseng proteins and to elucidate the protective mechanism of ginseng against HL induced damage. [source] The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stressTHE PLANT JOURNAL, Issue 4 2009Gabriel Levesque-Tremblay Summary Lipocalins are small ligand-binding proteins with a simple tertiary structure that gives them the ability to bind small, generally hydrophobic, molecules. Recent studies have shown that animal lipocalins play important roles in the regulation of developmental processes and are involved in tolerance to oxidative stress. Plants also possess various types of lipocalins, and bioinformatics analyses have predicted that some lipocalin members may be present in the chloroplast. Here we report the functional characterization of the Arabidopsis thaliana chloroplastic lipocalin AtCHL. Cellular fractionation showed that AtCHL is a thylakoid lumenal protein. Drought, high light, paraquat and abscisic acid treatments induce AtCHL transcript and protein accumulation. Under normal growth conditions, knockout (KO) and over-expressing (OEX) lines do not differ from wild-type plants in terms of phenotype and photosynthetic performance. However, KO plants, which do not accumulate AtCHL, show more damage upon photo-oxidative stress induced by drought, high light or paraquat. In contrast, a high level of AtCHL allows OEX plants to cope better with these stress conditions. When exposed to excess light, KO plants display a rapid accumulation of hydroxy fatty acids relative to the wild-type, whereas the lipid peroxidation level remains very low in OEX plants. The increased lipid peroxidation in KO plants is mediated by singlet oxygen and is not correlated with photo-inhibition of the photosystems. This work provides evidence suggesting that AtCHL is involved in the protection of thylakoidal membrane lipids against reactive oxygen species, especially singlet oxygen, produced in excess light. [source] A reporter system for the individual detection of hydrogen peroxide and singlet oxygen: its use for the assay of reactive oxygen species produced in vivoTHE PLANT JOURNAL, Issue 3 2007Ning Shao Summary A reporter system for the assay of reactive oxygen species (ROS) was developed in Chlamydomonas reinhardtii, a plant model organism well suited for the application of inhibitors and generators of various types of ROS. This system employs various HSP70A promoter segments fused to a Renilla reniformis luciferase gene as a reporter. Transformants with the complete HSP70A promoter were inducible by both hydrogen peroxide and singlet oxygen. Constructs that lacked upstream heat-shock elements (HSEs) were inducible by hydrogen peroxide, indicating that this induction does not require such HSEs. Rather, downstream elements located between positions ,81 to ,149 with respect to the translation start site appear to be involved. In contrast, upstream sequences are essential for the response to singlet oxygen. Thus, activation by singlet oxygen appears to require promoter elements that are different from those used by hydrogen peroxide. ROS generated endogenously by treatment of the alga with metronidazole, protoporphyrin IX, dinoterb or high light intensities were detected by this reporter system, and distinguished as production of hydrogen peroxide (metronidazole) and singlet oxygen (protoporphyrin IX, dinoterb, high light). This system thus makes it possible to test whether, under varying environmental conditions including the application of abiotic stress, hydrogen peroxide or singlet oxygen or both are produced. [source] Developmental and light effects on the accumulation of FtsH protease in Arabidopsis chloroplasts , implications for thylakoid formation and photosystem II maintenanceTHE PLANT JOURNAL, Issue 5 2005Adi Zaltsman Summary The chloroplast ATP-dependent metalloprotease FtsH is involved in the degradation of unassembled proteins, the repair of photosystem II (PSII) from photoinhibition, and, apparently, the formation of thylakoids. In Arabidopsis, it is encoded by a family of 12 genes. However, the products of only four of them, FtsH1, 2, 5 and 8, have been found in chloroplasts to date. Mutations in two of these, FtsH2 and 5, demonstrate a visible phenotype of variegated leaves, with the phenotype of the FtsH2 mutant being more pronounced. Moreover, the degree of variegation appears to be dependent on developmental stage and environmental factors, suggesting an intricate relationship between the different gene products. To explore this, developmental and light effects on the accumulation of FtsH protease were studied in wild-type (WT) and FtsH2-mutant plants. Whereas cotyledons of the mutant were indistinguishable from those of the WT, the first true leaves were almost completely white. Subsequent leaves contained increasing proportions of green sectors. Analysis of the mRNA of the four FtsH genes, in cotyledons, first and second leaves of WT and mutant plants, revealed that: (i) transcript level increases during development, and (ii) transcript level in the mutant is higher than in the WT. FtsH protein level in the mutant was ca. 50% of that found in the WT, whereas the levels of other thylakoid proteins were the same. In individual leaves, the level of FtsH protein increased during development as well. Exposure of seedlings to different light intensities did not affect the degree of variegation, suggesting that it is due to a defect in chloroplast development rather than photobleaching. Examination of FtsH protein during exposure to high light revealed a decrease in its level, concomitant with a decrease in PSII potential, suggesting that the kinetics of photoinhibition reflects not only photodamage to PSII and induction of protective mechanisms, but also a decrease in repair capacity due to a reduction in the level of FtsH protease. [source] |