High Gain (high + gain)

Distribution by Scientific Domains


Selected Abstracts


High-Gain Broadband Solid-State Optical Amplifier using a Semiconducting Copolymer,

ADVANCED MATERIALS, Issue 1 2009
Dimali Amarasinghe
A dilute fluorene copolymer produces enhanced optical amplification. High gain with 1000 times optical amplification and a long lifetime is achieve in only 1mm of the material, and exciton,exciton annihilation is suppressed. [source]


High gain cavity-backed slot antenna with a windowed metallic superstrate

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 12 2008
M. A. Hanqing
Abstract A novel technique for gain enhancement of cavity-backed slot antenna is developed and discussed. The high gain radiation of the proposed antenna is achieved by a windowed metallic superstrate above the slot. The parametric studies of the proposed structure are provided, the radiation mechanism of the proposed antenna is investigated, and then the design guidelines for this type of radiators are described. The prototype is fabricated and found to have an impedance bandwidth of 12% and a gain of 12.3 dBi at the center frequency of 2.4 GHz. The characteristics of the proposed antenna have been validated by CST simulation software and experiments. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 3114,3118, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23880 [source]


Organic Electronics: High Tg Cyclic Olefin Copolymer Gate Dielectrics for N,N,-Ditridecyl Perylene Diimide Based Field-Effect Transistors: Improving Performance and Stability with Thermal Treatment (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Mater.
Abstract A novel application of ethylene-norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field-effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally-treated N,N, -ditridecyl perylene diimide (PTCDI-C13)-based n-type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI-C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n-type FETs exhibit high atmospheric field-effect mobilities, up to 0.90 cm2 V,1 s,1 in the 20 V saturation regime and long-term stability with respect to H2O/O2 degradation, hysteresis, or sweep-stress over 110 days. By integrating the n-type FETs with p-type pentacene-based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized. [source]


High Tg Cyclic Olefin Copolymer Gate Dielectrics for N,N,-Ditridecyl Perylene Diimide Based Field-Effect Transistors: Improving Performance and Stability with Thermal Treatment

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Jaeyoung Jang
Abstract A novel application of ethylene-norbornene cyclic olefin copolymers (COC) as gate dielectric layers in organic field-effect transistors (OFETs) that require thermal annealing as a strategy for improving the OFET performance and stability is reported. The thermally-treated N,N, -ditridecyl perylene diimide (PTCDI-C13)-based n-type FETs using a COC/SiO2 gate dielectric show remarkably enhanced atmospheric performance and stability. The COC gate dielectric layer displays a hydrophobic surface (water contact angle = 95° ± 1°) and high thermal stability (glass transition temperature = 181 °C) without producing crosslinking. After thermal annealing, the crystallinity improves and the grain size of PTCDI-C13 domains grown on the COC/SiO2 gate dielectric increases significantly. The resulting n-type FETs exhibit high atmospheric field-effect mobilities, up to 0.90 cm2 V,1 s,1 in the 20 V saturation regime and long-term stability with respect to H2O/O2 degradation, hysteresis, or sweep-stress over 110 days. By integrating the n-type FETs with p-type pentacene-based FETs in a single device, high performance organic complementary inverters that exhibit high gain (exceeding 45 in ambient air) are realized. [source]


An overview on S-band erbium-doped fiber amplifiers

LASER PHYSICS LETTERS, Issue 1 2007
S. W. Harun
Abstract An erbium-doped fiber amplifier (EDFA) for S-band signal amplification is designed by using a depressed cladding erbium-doped fiber (DC-EDF). The fiber's characteristics are described in terms of the effects of the fiber spooling diameter on the amplifier's performance. In this experiment, the spooling diameter required for optimum amplifier gain was around 5,7 cm. By using a typical two-stage configuration (with a 27 m long DC-EDF and a 260 mW pump laser power), the maximum small signal gain obtained was about 32 dB. Yet, by employing a double pass amplifier configuration with a shorter DC-EDF length and a lower pump laser power (15 m and 135 mW, respectively), a similar maximum small signal gain of approximately 30 dB was achieved. This improvement in gain characteristics however, incurred an increased noise figure penalty of about 1 dB in comparison to single-pass amplifier configurations. In order to reduce the amplifier's noise figure while maintaining its high gain, a partial double-pass S-band EDFA configuration was introduced. This configuration provides a high 26.9 dB gain and an improved noise figure comparable to a single pass configuration. Gain clamping in S-band EDFAs are also demonstrated by utilizing a fiber Bragg grating to form an oscillating laser at around 1530 nm. This technique enables good gain clamping with a gain variation of less than 1 dB. (© 2007 by Astro, Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA) [source]


Efficient high gain with low sidelobe level antenna structures using circular array of square parasitic patches on a superstrate layer

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 12 2010
R. K. Gupta
Abstract This article proposes efficient high gain with low sidelobe level (SLL) antenna structures using circular array of square parasitic patches (CASPPs) for wireless applications. The antenna structure consists of a microstrip antenna that feeds a CASPP fabricated on a low cost FR4 superstrate. The patches on superstrate are suspended in air at about ,o/2. The structure with 19-element CASPPs is designed, fabricated, and tested. The measured VSWR is <2 over 5.725,5.875 GHz frequency band. The antenna with a single square patch provides a gain of 12.6 dB; whereas, the antenna with 19-element CASPPs provides a gain of 18.3 dB with 93.4% efficiency, SLL of ,26.1 dB, and front to back lobe ratio of >20 dB. Antenna with CASPPs on finite ground requires 25% less ground plane size as compared to planar array. The proposed structure can be packaged inside an application platform. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52:2812,2817, 2010; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25613 [source]


Planar 4-element UWB antenna array and time domain characterization

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 12 2008
Ying-Ying Yang
Abstract In this article, a novel planar ultra-wideband (UWB) antenna array based on four identical UWB antenna elements for UWB applications is presented. The proposed antenna array yields an impedance bandwidth of 3.1,10.6 GHz with VSWR <2. Over the entire bandwidths, it has constant high gain, which is about 6.5,10.5 dBi, and a 60° 3-dB beamwidth is obtained within the operational band. A planar 2-element UWB antenna array and a band-notched 4-element UWB antenna array are also provided for references. Time domain descriptors of the proposed antenna array have been used to estimate short-range UWB signal transmission, propagation, and reception. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 3118,3123, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23874 [source]


A novel internal antenna with high gain for wireless phone

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 9 2007
Ying Liu
Abstract A novel internal antenna for synchronous code division multiple access band wireless phone is presented. Traditional internal antenna is monopole or Planar Inverted-F Antenna, which have no gain high enough in the limited space in phone. The proposed antenna is composed of two antenna elements with equal magnitude and 180° phase difference, to assure voice quality with high gain. The measured maximum gain is 2.69 dBi and maximum efficiency is 70.1% in the frequency band 450,470 MHz. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2112,2114, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22708 [source]


Meandering probe fed patch antenna with high gain characteristic for circularly polarized application

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 5 2007
Hau-Wah Lai
Abstract A meandering probe-fed circularly polarized stacked patch antenna with truncated corners is studied. The antenna has a wide 3-dB axial ratio bandwidth of 12%. It exhibits a stable radiation pattern across the axial ratio bandwidth. The antenna has low cross polarization and high gain, which are ,14 dB and 10 dBi, respectively. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 1095,1098, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22357 [source]


Ultra-wideband Vivaldi antenna design for multisensor adaptive ground-penetrating impulse radar

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 5 2006
Ahmet Serdar Turk
Abstract This paper describes a partially dielectric-loaded Vivaldi antenna (PDVA) structure that maintains ultra-wideband antenna characteristics over a bandwidth ratio greater than 25:1 so as to improve the impulse radiation characteristics for multisensor adaptive ground-penetrating Radar (GPR) operations. The PDVA is introduced for metal-detector-combined GPR head designs in order to avoid performance degradations based on the sensor interferences. It is shown that high gain, low input reflection, and signal-ringing levels over the wide operational bands are attainable for a PDVA with proper dielectric and absorber loadings. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 834,839, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21491 [source]


Development of respiratory control instability in heart failure: a novel approach to dissect the pathophysiological mechanisms

THE JOURNAL OF PHYSIOLOGY, Issue 1 2006
Charlotte H. Manisty
Observational data suggest that periodic breathing is more common in subjects with low F, high apnoeic thresholds or high chemoreflex sensitivity. It is, however, difficult to determine the individual effect of each variable because they are intrinsically related. To distinguish the effect of isolated changes in chemoreflex sensitivity, mean F and apnoeic threshold, we employed a modelling approach to break their obligatory in vivo interrelationship. We found that a change in mean CO2 fraction from 0.035 to 0.045 increased loop gain by 70 ± 0.083% (P < 0.0001), irrespective of chemoreflex gain or apnoea threshold. A 100% increase in the chemoreflex gain (from 800 l min,1 (fraction CO2),1) resulted in an increase in loop gain of 275 ± 6% (P < 0.0001) across a wide range of values of steady state CO2 and apnoea thresholds. Increasing the apnoea threshold F from 0.02 to 0.03 had no effect on system stability. Therefore, of the three variables the only two destabilizing factors were high gain and high mean CO2; the apnoea threshold did not independently influence system stability. Although our results support the idea that high chemoreflex gain destabilizes ventilatory control, there are two additional potentially controversial findings. First, it is high (rather than low) mean CO2 that favours instability. Second, high apnoea threshold itself does not create instability. Clinically the apnoea threshold appears important only because of its associations with the true determinants of stability: chemoreflex gain and mean CO2. [source]


Fixed relaying with adaptive antenna arrays for the downlink of multihop cellular networks

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 2 2010
Zaher Dawy
Multihop cellular networks are expected to play an important role in the evolution towards 4G. In this work, we propose the use of advanced antenna techniques (adaptive antenna arrays and directional antennas) at fixed relay stations in order to enhance the downlink performance of multihop cellular networks. The performance gains of various adaptive antenna configurations are analytically studied by introducing a new system-level parameter called the interference reduction factor. Moreover, Monte-Carlo simulation results as a function of various design parameters are presented and analysed in order to further highlight the gains of advanced antenna techniques. Based on the presented analysis, we propose the use of a hybrid antenna configuration at relay stations in order to obtain high gains with limited increase in complexity and cost. Copyright © 2010 John Wiley & Sons, Ltd. [source]