Home About us Contact | |||
High Efficiency (high + efficiency)
Kinds of High Efficiency Selected AbstractsHeterometal Alkoxides as Precursors for the Preparation of Porous Fe, and Mn,TiO2 Photocatalysts with High EfficienciesCHEMISTRY - A EUROPEAN JOURNAL, Issue 35 2008Xiao-Xin Zou Abstract Transition-metal-doped titanium glycolates (M,TG, with M=Fe, Mn), which are the first non-stoichiometric heterometal alkoxides, have been synthesised through a solvothermal doping approach. X-ray diffraction, UV/Vis diffuse reflectance and ESR spectroscopy revealed that the dopant ion (Fe3+ or Mn2+) is substituted for Ti4+ in the TG lattice. Fe3+ prolongs the crystallisation time of Fe,TG, whereas Mn2+ has a smaller effect on the crystallisation time in comparison with Fe3+. The as-synthesised M,TG materials were used directly as single-source precursors for the preparation of metal-doped titania (M,TiO2) through a simple thermal treatment process. The as-prepared M,TiO2 materials maintain the rod-like morphology of the precursors and possess a mesoporous structure with high crystallinity. It has been proved that the dopant ions are incorporated into the TiO2 lattice at the Ti4+ positions. The photocatalytic activities of the M,TiO2 materials obtained were evaluated by testing the degradation of phenol under UV irradiation. From the photocatalytic results, it was concluded that high crystallinity, a large surface area and appropriate transition-metal-doping are all beneficial to the enhancement of the photocatalytic performance of the doped TiO2 material. In addition, it was noted that in comparison with Mn,TiO2, Fe,TiO2 shows higher photocatalytic activity due to the better inhibition effect of Fe3+ on recombination of photogenerated electron,hole pairs. In contrast to the conventional nanosized TiO2 photocatalyst, the micrometre-sized M,TiO2 particles we obtained can be easily separated and recovered after the photocatalytic reactions. [source] Preparation of Bis(m -phenylene)-32-crown-10-Based Cryptand/Bisparaquat [3]Rotaxanes with High EfficiencyEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 36 2008Shijun Li Abstract Two [3]rotaxanes were synthesized from two bis(m -phenylene)-32-crown-10-based cryptands and a bisparaquat derivative by using a threading-followed-by-stoppering method. As a result of strong association and positive cooperative complexation between the cryptands and the bisparaquat derivative, high yields and high selectivities were achieved. No [2]rotaxanes were found during the preparation.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting ProcessADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Jae Woong Jung Abstract Polymer solar cells are fabricated by a novel solution coating process, roller painting. The roller-painted film , composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) , has a smoother surface than a spin-coated film. Since the roller painting is accompanied by shear and normal stresses and is also a slow drying process, the process effectively induces crystallization of P3HT and PCBM. Both crystalline P3HT and PCBM in the roller-painted active layer contribute to enhanced and balanced charge-carrier mobility. Consequently, the roller-painting process results in a higher power conversion efficiency (PCE) of 4.6%, as compared to that for spin coating (3.9%). Furthermore, annealing-free polymer solar cells (PSCs) with high PCE are fabricated by the roller painting process with the addition of a small amount of octanedi-1,8-thiol. Since the addition of octanedi-1,8-thiol induces phase separation between P3HT and PCBM and the roller-painting process induces crystallization of P3HT and PCBM, a PCE of roller-painted PSCs of up to 3.8% is achieved without post-annealing. A PCE of over 2.7% can also be achieved with 5,cm2 of active area without post-annealing. [source] Red-Emitting Polyfluorenes Grafted with Quinoline-Based Iridium Complex: "Simple Polymeric Chain, Unexpected High Efficiency"ADVANCED FUNCTIONAL MATERIALS, Issue 1 2010Zhihua Ma Abstract A series of red-light emitting electrophosphorescent polyfluorenes (PFs) with varying content of a quinoline-based iridium complex, (PPQ)2Ir(acac) (bis(2,4-diphenylquinolyl-N,C2,) iridium(acetylacetonate)), in the side chain are synthesized by Suzuki polycondensation. Because of the efficient Förster energy transfer from the PF main chain to (PPQ)2Ir(acac) and direct charge trapping on the complex, the electroluminescent emission from PF is nearly completely quenched, even though the amount of iridium complex incorporated into the polymers is as low as 1,mol %. Based on a single-layer device configuration, a luminous efficiency of up to 5.0,cd A,1 with a luminance of 2000,cd m,2 and Commission Internationale de L'Eclairage coordinates of (0.63, 0.35) (x, y) is realized, which is far superior to that of previously reported red-light emitting PFs containing benzothiazole- and isoquinoline-based iridium complexes. This result is beyond expectations, especially when considering that the simple polymeric chain involved has no additional charge-transporting moieties. Noticeably, the device efficiency remains as high as 4.2,cd A,1 with a luminance of 4000,cd m,2 even at current densities of 100,mA cm,2. Further optimization of the device configuration by incorporating an additional electron-injection layer leads to improved efficiencies of 8.3 and 7.5,cd A,1 at luminances of 100 and 1000,cd m,2, respectively. This state-of-the-art performance indicates that covalently attaching quinoline-based iridium complexes to a PF backbone is a simple and effective strategy to develop high-efficiency red-light emitting electrophosphorescent polymers. [source] Phenylcarbazole-Based Phosphine Oxide Host Materials For High Efficiency In Deep Blue Phosphorescent Organic Light-Emitting DiodesADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Soon Ok Jeon Abstract Highly efficient deep blue phosphorescent organic light-emitting diodes are developed using novel phenylcarbazole-based phosphine oxide host materials (PPO1 and PPO2). A deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium, is doped into PPO1 and PPO2 at a doping concentration of 15% and a high quantum efficiency of 18.4% is obtained with color coordinates of (0.14, 0.15). [source] Cover Picture: Multilayer Polymer Light-Emitting Diodes: White-Light Emission with High Efficiency (Adv. Mater.ADVANCED MATERIALS, Issue 17 200517/2005) Abstract White-light-emitting polymer diodes can be fabricated by solution processing using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers and/or small molecules as the hole-injection/transport layer (HIL/HTL) and the electron injection/transport layer (EIL/ETL), as reported on p.,2053 by Gong, Bazan, Heeger and co-workers. Illumination-quality light is obtained from these multilayer, high-performance devices, with stable CIE coordinates, color temperatures, and high color-rendering indices all close to those of "pure" white light. The cover illustration envisages the incorporation of the fabrication technique with low-cost manufacturing technology in order to produce large areas of high-quality white light. [source] Synthesis and Transfection Activity of New Cationic Phosphoramidate Lipids: High Efficiency of an Imidazolium DerivativeCHEMBIOCHEM, Issue 9 2008Mathieu Mével Dr. Abstract In an effort to enhance the gene-transfer efficiencies of cationic lipids and to decrease their toxicities, a series of new phosphoramidate lipids with chemical similarity to cell membrane phospholipids was synthesised. These lipids contained various cationic headgroups, such as arginine methyl ester, lysine methyl ester, homoarginine methyl ester, ethylenediamine, diaminopropane, guanidinium and imidazolium. Their transfection abilities, either alone or with the co-lipid DOPE, were evaluated in HEK293,T7 cells. We found that imidazolium lipophosphoramidate 7,a/DOPE lipoplexes gave the most efficient transfection with low toxicity (15,%). The luciferase activity was 100 times higher than that obtained with DOTAP/DOPE lipoplexes. The size, , potential, pDNA,liposome interactions and cellular uptakes of the lipoplexes were determined. No definitive correlation between the , potential values and the transfection efficiencies could be established, but the uptake of lipoplexes by the cells was correlated with their final transfection efficiencies. Our results show that imidazolium phosphoramidate lipids constitute a potential new class of cationic lipids for gene transfer. [source] ChemInform Abstract: Practical Access to Amines by Platinum-Catalyzed Reduction of Carboxamides with Hydrosilanes: Synergy of Dual Si,H Groups Leads to High Efficiency and Selectivity.CHEMINFORM, Issue 8 2010Shiori Hanada Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometryELECTROPHORESIS, Issue 21 2003Alexander R. Ivanov Abstract High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 ,m inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n -propanol and formamide as porogens and azobisisobutyronitrile as initiator. N -Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300,000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method. [source] Toward Highly Efficient Solid-State White Light-Emitting Electrochemical Cells: Blue-Green to Red Emitting Cationic Iridium Complexes with Imidazole-Type Ancillary LigandsADVANCED FUNCTIONAL MATERIALS, Issue 18 2009Lei He Abstract Using imidazole-type ancillary ligands, a new class of cationic iridium complexes (1,6) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2,-bipyridine)-type ancillary ligands, imidazole-type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue-green to red emitting cationic iridium complexes are obtained. Single-layer light-emitting electrochemical cells (LECs) based on cationic iridium complexes show blue-green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2,cd A,1 are achieved for the blue-green-emitting, yellow-emitting, and orange-emitting devices, respectively. By doping the red-emitting complex into the blue-green LEC, white LECs are realized, which give warm-white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color-rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2,cd,A,1, and 10,lm,W,1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs. [source] Organic Photovoltaics Using Tetraphenylbenzoporphyrin Complexes as Donor LayersADVANCED MATERIALS, Issue 14-15 2009M. Dolores Perez Small-molecule solar cells are demonstrated using Pt and Pd tetraphenylbenzoporphyrin as donor materials. High efficiencies are achieved, and the effects of triplet excited state diffusion are studied. The solubility of these molecules allows for the fabrication of solution processed solar cells with relatively high performance. [source] Cationic and anionic lipid-based nanoparticles in CEC for protein separationELECTROPHORESIS, Issue 11 2010Christian Nilsson Abstract The development of new separation techniques is an important task in protein science. Herein, we describe how anionic and cationic lipid-based liquid crystalline nanoparticles can be used for protein separation. The potential of the suggested separation methods is demonstrated on green fluorescent protein (GFP) samples for future use on more complex samples. Three different CEC-LIF approaches for protein separation are described. (i) GFP and GFP N212Y, which are equally charged, were separated with high resolution by using anionic nanoparticles suspended in the electrolyte and adsorbed to the capillary wall. (ii) High efficiency (800,000 plates/m) and peak capacity were demonstrated separating GFP samples from Escherichia coli with cationic nanoparticles suspended in the electrolyte and adsorbed to the capillary wall. (iii) Three single amino-acid-substituted GFP variants were separated with high resolution using an approach based on a physical attached double-layer coating of cationic and anionic nanoparticles combined with anionic lipid nanoparticles suspended in the electrolyte. The soft and porous lipid-based nanoparticles were synthesized by a one-step procedure based on the self-assembly of lipids, and were biocompatible with a large surface-to-volume ratio. The methodology is still under development and the optimization of the nanoparticle chemistry and separation conditions can further improve the separation system. In contrast to conventional LC, a new interaction phase is introduced for every analysis, which minimizes carry-over and time-consuming column regeneration. [source] Pharmacodynamic Analysis of the Interaction between Tiagabine and Midazolam with an Allosteric Model That Incorporates Signal TransductionEPILEPSIA, Issue 3 2003Daniël M. Jonker Summary: ,Purpose: The objective of this study was to characterize quantitatively the pharmacodynamic interaction between midazolam (MDL), an allosteric modulator of the ,-aminobutyric acid subtype A (GABAA) receptor, and tiagabine (TGB), an inhibitor of synaptic GABA uptake. Methods: The in vivo concentration,response relation of TGB was determined through pharmacokinetic/pharmacodynamic (PK/PD) modeling. Rats received a single intravenous dose of 10 mg/kg TGB in the absence and the presence of a steady-state plasma concentration of MDL. The EEG response in the 11.5- to 30-Hz frequency band was used as the pharmacodynamic end point. Results: Infusion of MDL resulted in a mean steady-state plasma concentration of 66 ± 3 ng/ml. A significant pharmacokinetic interaction with TGB was observed. MDL inhibited TGB clearance by 20 ± 7 ml/min/kg from the original value of 89 ± 6 ml/min/kg. However, no changes in plasma protein binding of both drugs were observed. The concentration,EEG relation of TGB was described by the sigmoid- Emax model. The pharmacodynamic parameter estimates of TGB were: Emax = 327 ± 10 ,V, EC50 = 392 ± 20 ng/ml, and nH = 3.1 ± 0.3. These values were not significantly different in the presence of MDL. Factors that may explain the lack of synergism were identified by a mechanism-based interaction model that separates the receptor activation from the signal-transduction process. High efficiency of signal transduction and the presence of a baseline response were shown to diminish the degree of synergism. Conclusions: We conclude that the in vivo pharmacodynamic interaction between MDL and TGB is additive rather than synergistic. This strongly suggests that allosteric modulation of the antiseizure activity of a GAT-1 inhibitor by a benzodiazepine does not offer a therapeutic advantage. [source] Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications,ADVANCED MATERIALS, Issue 6 2004D. Anthopoulos High efficiency, solution-processed electroluminescent devices are realized using two new red-light-emitting phosphorescent dendrimers (see Figure). By modulating the dendrimer architecture (changing the structure of the luminescent core), tuning of the emission spectra is demonstrated. Processability in organic solvents is achieved by incorporating the red-emitting cores into dendrimers with suitable surface groups and dendrons. [source] A study on the sorption of NO3, and F, on the carboxymethylated starch-based hydrogels loaded with Fe2+ ionsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Ghanshyam S. Chauhan Abstract Using the principle of geochemistry of fluoride, green and cost effective anion adsorbents were developed for the removal of F, from water systems. The scheme was further applied for the removal of NO3, also. Carboxymethylated starch functionalized through network formation with acrylamide was used as adsorbent, and the resultant hydrogels were loaded with Fe2+ ions to generate anchorage for the anions. Sorption of Fe2+ was studied as a function of different factors such as time, temperature, pH, and ion strength. The network having the highest Fe2+ uptake was loaded with the Fe2+ ions under optimum conditions and used for the sorption of F, and NO3,. High efficiency has been observed for F,, as even up to 100% uptake has been observed within just 10 minutes. The support shows high selectivity for NO3,, which was used as anion reference. Thermodynamics of sorption confirms low order and low energy processes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source] High efficiency screen-printed EFG Si solar cells through rapid thermal processing-induced bulk lifetime enhancementPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 1 2005K. Nakayashiki Abstract This paper shows that one second (1,s) firing of Si solar cells with screen-printed Al on the back and SiNx anti-reflection coating on the front can produce a high quality Al-doped back-surface-field (Al-BSF) and significantly enhance SiNx -induced defect hydrogenation in the bulk Si. Open-circuit voltage, internal quantum efficiency measurements, and cross-sectional scanning electron microscopy pictures on float-zone silicon cells revealed that 1,s firing in rapid thermal processing at 750°C produces just as good a BSF as 60,s firing, indicating that the quality of Al-BSF region is not a strong function of RTP firing time at 750°C. Analysis of edge-defined film-fed grown (EFG) Si cells showed that short-term firing is much more effective in improving the hydrogen passivation of bulk defects in EFG Si. Average minority-carrier lifetime in EFG wafers improved from ,3 to ,33,,s by 60,s firing but reached as high as 95,s with 1,s firing, resulting in 15·6% efficient screen-printed cells on EFG Si. Copyright © 2004 John Wiley & Sons, Ltd. [source] The effect of co-surfactant-modified micelles on chiral separations in EKCELECTROPHORESIS, Issue 16 2009Adeline B. Kojtari Abstract The use of chiral pseudostationary phases in EKC provides high efficiencies and excellent resolution for enantiomeric separations. The chiral pseudostationary phases of interest in this study are alcohol-modified ("swollen") micelles, in which a co-surfactant (medium chain-length alcohol) is added with the surfactant. In this study, the chiral surfactant, dodecoxycarbonylvaline (DDCV), along with the co-surfactant, 2-hexanol, has been prepared as swollen micelle in order to investigate the chiral separation of enantiomeric pairs. Three sets of experiments were investigated in which swollen micelle systems contained: chiral surfactant and racemic co-surfactant; chiral surfactant and chiral co-surfactant; and phase ratio increases, in which both chiral surfactant and chiral co-surfactant were employed. In the first two sets of experiments, co-surfactant concentration was held constant and the surfactant concentration was increased. In the third set of experiments, both surfactant and chiral surfactant concentrations were increased proportionally. The chromatographic figures of merit for each enantiomeric pair were investigated and compared with various chiral aggregate systems. In swollen micelle compositions using constant racemic 2-hexanol concentration, when DDCV concentration increased, enantioselectivity and resolution increased; whereas, efficiency remained constant for most of the test compounds. Compositions using constant S -2-hexanol concentration reached a maximum in all chromatographic figures of merit when DDCV concentration was increased from 2 to 3%. An increase in both surfactant and co-surfactant concentrations led to noisy baselines and chiral aggregates that were generally unstable in solution. [source] Tuning the Energy Level and Photophysical and Electroluminescent Properties of Heavy Metal Complexes by Controlling the Ligation of the Metal with the Carbon of the Carbazole Unit,ADVANCED FUNCTIONAL MATERIALS, Issue 4 2007L. Yang Abstract Four novel IrIII and PtII complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84,nm for the Ir complexes and 63,nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ3/LiF/Al can attain very high efficiencies. [source] A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDsADVANCED MATERIALS, Issue 22 2010Ho-Hsiu Chou The bipolar host material BCPO (bis-4- (N-carbazolyl)phenylphosphine oxide) containing a phosphine oxide and two carbazole groups, synthesized in three steps, shows a high triplet energy gap of 3.01,eV. The material can be used as a universal host for blue, green, and red phosphorescent devices, all giving extremely high efficiencies with turn-on voltages within 3 V. [source] The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive ConceptADVANCED MATERIALS, Issue 2 2010Antonio Luque Abstract The intermediate band (IB) solar cell has been proposed to increase the current of solar cells while at the same time preserving the output voltage in order to produce an efficiency that ideally is above the limit established by Shockley and Queisser in 1961. The concept is described and the present realizations and acquired understanding are explained. Quantum dots are used to make the cells but the efficiencies that have been achieved so far are not yet satisfactory. Possible ways to overcome the issues involved are depicted. Alternatively, and against early predictions, IB alloys have been prepared and cells that undoubtedly display the IB behavior have been fabricated, although their efficiency is still low. Full development of this concept is not trivial but it is expected that once the development of IB solar cells is fully mastered, IB solar cells should be able to operate in tandem in concentrators with very high efficiencies or as thin cells at low cost with efficiencies above the present ones. [source] Transparent Inverted Organic Light-Emitting Diodes with a Tungsten Oxide Buffer Layer,ADVANCED MATERIALS, Issue 20 2008Jens Meyer Highly efficient transparent OLEDs are demonstrated. A novel WO3 buffer layer protects the organics during the sputter deposition of the top ITO electrode. L,J,V and SIMS analysis yield optimized devices with a 60,nm thick WO3 layer. Very high efficiencies of 38 cdA,1 and 30 lm W,1 at 100,cd m,2 are obtained. At the same time the transmittance throughout the visible part of the spectrum exceeds 75%. [source] Single cell PCR from archival stained bone marrow slides: A method for molecular diagnosis and characterizationJOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 3 2004Stefanie Zanssen Abstract Molecular analysis of isolated single cells is a powerful tool for clarifying issues of cell origin and clonality. Previous reports have described PCR amplifications from total DNA and RNA extracted from archival bone marrow and peripheral blood smears and have also shown the feasibility of amplifications from single cells, microdissected from stained histological sections. In this study, a method is described for performing PCR from morphologically defined single cells isolated from archival May-Gruenwald-Giemsa-stained bone-marrow and blood smears. Using three DNA extraction procedures, the organic lysis showed reproducible high efficiencies of amplifications. With this method, we were able to amplify long range amplicons up to 14.5 kb from mitochondrial DNA as well as PCR products of conventional length. The usability of such products for molecular diagnosis is demonstrated by restriction fragment length polymorphism (RFLP)characterization of a mitochondrial disorder. In conclusion, this method has the power to perform molecular diagnosis and characterization of diseases on the single cell level, and should provide valuable information to aid disease treatment and prognosis of hematological disorders. J. Clin. Lab. Anal. 18:176,181, 2004. © 2004 Wiley-Liss, Inc. [source] A masked process for the industrial production of buried contact solar cells on multi-crystalline siliconPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 6 2008Michelle McCann Abstract This paper reports on the development of a masked process for the production of buried contact solar cells on multi-crystalline silicon. The process results in high efficiencies, and only includes steps that would be feasible in an industrial environment. We report here on different mask candidates and on the importance of hydrogenation with the new process. Using the developed process, we produced 111 large area (12,×,12,cm2) cells and achieved an average cell efficiency of 16·2%. The best cell had an efficiency of 16·9%, a Voc of 616,mV, a Jsc of 35·0,mA/cm2 and a fill factor of 78·3%. Copyright © 2008 John Wiley & Sons, Ltd. [source] High-efficiency solar cells on phosphorus gettered multicrystalline silicon substratesPROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Issue 8 2006O. Schultz Abstract Measurements of the dislocation density are compared with locally resolved measurements of carrier lifetime for p-type multicrystalline silicon. A correlation between dislocation density and carrier recombination was found: high carrier lifetimes (>100,µs) were only measured in areas with low dislocation density (<105,cm,2), in areas of high dislocation density (>106,cm,2) relatively low lifetimes (<20,µs) were observed. In order to remove mobile impurities from the silicon, a phosphorus diffusion gettering process was applied. An increase of the carrier lifetime by about a factor of three was observed in lowly dislocated regions whereas in highly dislocated areas no gettering efficiency was observed. To test the effectiveness of the gettering in a solar cell manufacturing process, five different multicrystalline silicon materials from four manufacturers were phosphorus gettered. Base resistivity varied between 0·5 and 5,,,cm for the boron- and gallium-doped p-type wafers which were used in this study. The high-efficiency solar cell structure, which has led to the highest conversion efficiencies of multicrystalline silicon solar cells to date, was used to fabricate numerous solar cells with aperture areas of 1 and 4,cm2. Efficiencies in the 20% range were achieved for all materials with an average value of 18%. Best efficiencies for 1,cm2 (20·3%) and 4,cm2 (19·8%) cells were achieved on 0·6 and 1·5,,,cm, respectively. This proves that multicrystalline silicon of very different material specification can yield very high efficiencies if an appropriate cell process is applied. Copyright © 2006 John Wiley & Sons, Ltd. [source] Phenol-Castor Oil: Modified Peel for Dermal MelasmaDERMATOLOGIC SURGERY, Issue 5 2006THADA PIAMPHONGSANT MD BACKGROUND Deep type of melasma is difficult to treat. Various compositions for peeling have been formulated to accomplish this. OBJECTIVE Our purpose was to determine the safe use of the new formula, which was composed of phenol and castor oil. METHODS Different concentrations of phenol and castor oil were mixed in five formulations, and the solutions were tested on the forearms of 10 volunteers. The application time was 1 minute, different from that of the original phenol-croton oil. Formula 4 was found to cause a high effect of peeling with least side effects and was used to treat deep facial melasma in 30 patients. RESULTS Higher concentrations of castor oil produced more inflammation when mixed with phenol. Formula 4 was used to clear two cases of melasma in 1 week despite no effect from prior use of a modified antimelasma cream, while some degree of fading was noted in other cases. The total number of different melasma indices was reduced from 206.4 to 91.2 in 30 patients. Hyperpigmentation was noted in five cases and hypopigmentation in one case. Neither scar formation nor cardiac arrhythmia was observed. CONCLUSION A phenol-castor oil peel with an application time of 1 minute reduces pigments in the deep type of melasma with least side effects and a high efficiency when combined with an antimelasma cream. The safe formula and the technique of application are introduced. [source] Complementary representation and zones of ecological transitionECOLOGY LETTERS, Issue 1 2001K.J. Gaston Minimum complementary sets of sites that represent each species at least once have been argued to provide a nominal core reserve network and the starting point for regional conservation programs. However, this approach may be inadequate if there is a tendency to represent several species at marginal areas within their ranges, which may occur if high efficiency results from preferential selection of sites in areas of ecological transition. Here we use data on the distributions of birds in South Africa and Lesotho to explore this idea. We found that for five measures that are expected to reflect the location of areas of ecological transition, complementary sets tend to select higher values of these measures than expected by chance. We recommend that methods for the identification of priority areas for conservation that incorporate viability concerns be preferred to minimum representation sets, even if this results in more costly reserve networks. [source] Nanodiamond Thin Film Electrodes: Metal Electro-Deposition and Stripping ProcessesELECTROANALYSIS, Issue 3 2003Hian, Lau Chi Abstract The properties of a nanodiamond thin film deposit formed on titanium substrates in a microwave-plasma enhanced CVD process, are investigated for applications in electroanalysis. The nanodiamond deposit consists of intergrown nano-sized platelets of diamond with a high sp2 carbon content giving it high electrical conductivity and electrochemical reactivity. Nanodiamond thin film electrodes (of approximately 2,,m thickness) are characterized by electron microscopy and electrochemical methods. First, for a reversible one electron redox system, Ru(NH3)63+/2+, nanodiamond is shown to give well-defined diffusion controlled voltammetric responses. Next, metal deposition processes are shown to proceed on nanodiamond with high reversibility and high efficiency compared to processes reported on boron-doped diamond. The nucleation of gold is shown to be facile at edge sites, which are abundant on the nanodiamond surface. For the deposition and stripping of both gold and copper, a stripping efficiency (the ratio of electro-dissolution charge to electro-deposition charge) of close to unity is detected even at low concentrations of analyte. The effect of thermal annealing in air is shown to drastically modify the electrode characteristics probably due to interfacial oxidation, loss of active sp2 sites, and loss of conductivity. [source] Mercury speciation by CE: An updateELECTROPHORESIS, Issue 1 2009Petr Kubán Abstract This review provides an update on mercury speciation by CE. It includes a brief discussion on physicochemical properties, toxicity and transformation pathways of mercury species (i.e. methyl-, ethyl-, phenyl- and inorganic mercury) and outlines recent trends in Hg speciation by CE. CE is presented as a complementary technique to chromatographic separation techniques, especially in cases when speed, high efficiency and low sample volumes are required. The development of suitable sample preconcentration/isolation (sample stacking, ion exchange, liquid,liquid,liquid extraction, dual-cloud point extraction) to achieve low LODs for analysis of trace concentrations of mercury species in real samples is emphasized. Hyphenation of CE to element specific detectors (i.e. electrothermal atomic absorption spectrometry, atomic fluorescence spectrometry, inductively coupled plasma-optical emission spectrometry, inductively coupled plasma-mass spectrometry) is discussed as well as a potential of CE in interaction studies that may provide useful information on interaction of various Hg species with selected bio-macromolecules. [source] Rapid capillary electrophoresis time-of-flight mass spectrometry separations of peptides and proteins using a monoquaternarized piperazine compound (M7C4I) for capillary coatingsELECTROPHORESIS, Issue 8 2008Anisa Elhamili Abstract A monoquaternarized piperazine, 1-(4-iodobutyl) 4-aza-1-azoniabicyclo[2,2,2] octane iodide (M7C4I), has been evaluated as a surface derivatization reagent for CE in combination with TOF MS for the analysis of proteins, peptides, and protein digests. The M7C4I piperazine, at alkaline pH, forms a covalent bond via alkylation of the ionized silanols producing a cationic surface with a highly stable and reversed EOF. The obtained surface yields rapid separations (less than 5,min) of peptides and proteins at acidic pH with high separation efficiencies (up to 1.1×106 plates/m for peptides and up to 1.8×106 plates/m for proteins) and no observed bleeding of the coating reagent into the mass spectrometer. The simplicity of the coating procedure also enables fast (2,min) regeneration of the surface, if necessary. This is useful in the analysis of complex samples in order to prevent possible memory effects. The potential of using M7C4I-coated capillaries for MS analysis of complex samples is demonstrated by the separation of peptides, proteins, and protein digests. Even more, the spectacular thing in which large intact proteins with molecular masses over 0.5,MDa could be separated. The coating showed good ability to handle these large proteins with high efficiency and retained peak shape as demonstrated by separation of IgG1 (150,kDa) and thyroglobulin (669,kDa). [source] Effect of detergent on electromigration of proteins: CE of very low density lipoprotein receptor modules and viral proteinsELECTROPHORESIS, Issue 20 2007Leopold Kremser Dr. Abstract The different electrophoretic behavior of the members of two groups of proteins with respect to the absence or presence of detergent additives in the BGE was explored. Recombinant soluble concatemers of repeat 3 of the very low density lipoprotein (VLDL)-receptor fused at their N -terminus to maltose-binding protein (MBP) exhibited different electrophoretic mobilities in borate buffer (pH,8.3) in the absence and in the presence of dodecyl-PEG ether (D-PEG). This enabled the separation of the receptor fragments from MBP after enzymatic cleavage. In the presence of SDS, the mobilities of all proteins approached the same values with increase in detergent concentrations. In contrast, viral capsid proteins of a human rhinovirus (HRV) exhibited different migration in the presence of the additive. For the receptor proteins, extreme apparent high plate numbers were observed when the SDS concentration in the sample and the separation buffer differed. This effect might be erroneously interpreted as a high efficiency. However, it is due to the conductivity boundaries caused by the sample and leads to a total loss of separation. [source] |