Home About us Contact | |||
High Density Polyethylene (high + density_polyethylene)
Selected AbstractsA lithium ionomer of poly(ethylene-co-methacrylic acid) copolymer as compatibilizer for blends of poly(ethylene terephthalate) and high density polyethylenePOLYMER ENGINEERING & SCIENCE, Issue 11 2002A. Retolaza Blends of 75/25 poly(ethylene terephthalate) (PET)/high density polyethylene (HDPE) containing poly(ethylene-co-methacrylic acid) partially neutralized with lithium (PEMA-Li) were obtained by direct injection molding in an attempt (i) to ameliorate the poor performance of the binary blend and (ii) to find the best compatibilizer content. The presence of PEMA-Li caused a nucleation effect on PET, and a decrease in the crystalline content of HDPE. The compatibilizing effect of PEMA-Li was due to the combined effects of interaction at the interface and chemical reactions. The ternary blends showed a complex morphology, with two dispersed HDPE and PEMA-Li phases that contained a small internal dispersed phase, probably of PET. The compatibilizing effect of PEMA-Li was clearly shown by means of an impressive increase in the ductility and to a minor extent in the impact strength. The highest property improvement (ductility increase 1450%) appeared upon the addition of 45% PEMA-Li with respect to the HDPE phase, but taking into account the recycling interest, the ternary blend with the addition of roughly 22.5% PEMA-Li appears to be the most attractive. [source] On Processing and Impact Deformation Behavior of High Density Polyethylene (HDPE),Calcium Carbonate NanocompositesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009Qiang Yuan Abstract Different processing approaches were adopted to obtain the best combination of strength and toughness. The approach that yielded superior properties was examined in detail to study the mechanical response of nanoscale calcium carbonate-reinforced high density polyethylene in conjunction with unreinforced high density polyethylene. The reinforcement of high density polyethylene with nanoscale calcium carbonate increases impact strength and is not accompanied by decrease in yield strength. The addition of nanoscale calcium carbonate to high density polyethylene alters the micromechanism of deformation from crazing-tearing in high density polyethylene to fibrillation in high density polyethylene,calcium carbonate nanocomposite. [source] Study on the Phase Behavior of High Density Polyethylene , Ethylene Octene Copolymer BlendsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 3 2007Daniela Mileva Abstract The processes of melting and crystallization of blends based on HDPE and EOC were investigated. DSC thermograms showed that a separate crystallization and co-crystallization occurred in the blends studied. Avrami approach was used to analyze the kinetics of crystallization in the blends. It is shown that the Avrami exponent depends on the EOC concentration of the samples studied. The difference in the Avrami parameters for HDPE, EOC and the blends indicated that the nucleation mechanism and dimension of the spherulite growth of the blends were different from that of HDPE to some extent. The crystal growth was examined in the context of the Lauritzen-Hoffman theory. DSC traces obtained at different cooling rates were used for analyzing the non-isothermal crystallization. It was found that the Ozawa model was rather inapplicable for the materials studied. In contrast, the Avrami equation modified by Jeziorny can be used more efficiently to describe the non-isothermal crystallization behavior of HDPE-EOC blends. [source] Isothermal crystallization of high density polyethylene and nanoscale calcium carbonate compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Jiann-Wen HuangArticle first published online: 26 NOV 200 Abstract High density polyethylene (HDPE) and calcium carbonate (CaCO3) nanocomposites with maleic anhydride grafted HDPE (manPE) as a compatibilizer were prepared via compounding in a twin-screw extruder. The CaCO3 are well dispersed in the HDPE matrix from the observation of transmission electron microscope. The isothermal crystallization kinetics was studied by differential scanning calorimetry and simulated by Avrami and Tobin models. The nucleation constants and fold surface free energy were estimated from Lauritzen,Hoffman relation. The results indicate that both manPE and well-dispersed CaCO3 particles would act as nuclei to induce heterogeneous nucleation and enhance crystallization rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Efficient utilization of plastic waste through product design and process adaptation: A case study on stiffness enhancement of beams produced from plastic lumberADVANCES IN POLYMER TECHNOLOGY, Issue 3 2008Cristian Pio Abstract The aim of the present work is the development of a method for structural reinforcement of beams obtained by in-mold extrusion of plastics from solid urban waste. The beams obtained by in-mold extrusion are commonly used for outdoor furniture and structures. The material used for such applications is mainly composed of low-density polyethylene derived from bags and films, with small amounts of high density polyethylene and polypropylene, as well as traces of polyethylene terephthalate. This material is usually referred to as "plastic lumber." Plastic lumber products have a low stiffness, which results in high deflections under flexural loads, particularly under creep loading. In this study, reinforcing rods of high aspect ratio were incorporated into plastic lumber beams in specific positions with respect to the cross section of the beam. The reinforcement of the plastic lumber beams with fine rods is introduced in the typical intrusion process used for the production of unreinforced beams. Glass fiber reinforced pultruded rods were chosen for this purpose from a preliminary evaluation of different materials. Different diameter glass fiber reinforced pultruded rods, including surface-abraded systems to increase the roughness, were used for the reinforcement of plastic lumber beams. The reinforced beams were tested in terms of flexural stiffness, creep resistance, and pullout resistance of the embedded rods. The results obtained from the mechanical tests showed a significant enhancement of flexural stiffness and creep resistance behavior. The performance at higher stress levels was shown to be significantly dependent on the interfacial adhesion between rods and polymer matrix. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:133,142, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20131 [source] Structure and properties of phase change materials based on HDPE, soft Fischer-Tropsch paraffin wax, and wood flourJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010M. E. Mngomezulu Abstract Phase-change materials based on high density polyethylene (HDPE), soft Fischer-Tropsch paraffin wax (M3), and alkali-treated wood flour (WF) were investigated. The blend and composite samples were prepared by melt mixing using a Brabender Plastograph, followed by melt pressing. They were characterized in terms of their morphology, as well as thermal, mechanical, thermo-mechanical, and water absorption properties. Although SEM micrographs showed some evidence of intimate contact between the WF particles and the HDPE matrix as a result of alkali treatment, poor filler dispersion, and interfacial adhesion were also observed. Partial immiscibility of the HDPE and the M3 wax was noticed, with the WF particles covered by wax. There was plasticization of the HDPE matrix by the wax, as well as partial cocrystallization, inhomogeneity and uneven wax dispersion in the polymer matrix. The HDPE/WF/M3 wax composites were more homogeneous than the blends. The presence of wax reduced the thermal stability of the blends and composites. Both the presence of M3 wax and WF influenced the viscoelastic behavior of HDPE. The HDPE/M3 wax blends showed an increase in the interfacial amorphous content as the wax content increases, which resulted in the appearance of a ,-relaxation peak. The presence of M3 wax in HDPE reduced the mechanical properties of the blends. For the composites these properties varied with WF content. An increase in wax content resulted to a decrease in water uptake by the composites, probably because the wax covered the WF particles and penetrated the pores in these particles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Effects of two different maleic anhydride-modified adhesion promoters (PP-g-MA) on the structure and mechanical properties of nanofilled polyolefinsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009P. Eteläaho Abstract The effects of adhesion promoter properties on the structure and mechanical behavior of nanoclay-filled polyolefin nanocomposites are presented. Two different maleic anhydride-modified polypropylenes having varying maleic anhydride content and molecular weight were used. The influence of these parameters on the performance and morphology of the prepared polypropylene and high density polyethylene-based nanocomposites was examined by mechanical testing, X-ray diffraction, and electron microscopy. The low molecular weight adhesion promoter seemed to be effective in both matrices in relation to mechanical property enhancements, whereas its high molecular weight counterpart performed well only in polyethylene matrix. X-ray diffraction results and examination of morphology revealed that the intercalation and the dispersion of the nanoclay were more even in both matrices when the low molecular weight adhesion promoter with a higher maleic anhydride content was used. On the other hand, the use of high molecular weight adhesion promoter led to a less uniform dispersion but also to a greater amount of exfoliated clay particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Dynamic mechanical and thermal properties of PE-EPDM based jute fiber compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Gautam Sarkhel Abstract The present investigation deals with the mechanical, thermal and viscoelastic properties of ternary composites based on low density polyethylene (LDPE)-ethylene,propylene,diene terpolymer (EPDM) blend and high density polyethylene (HDPE)-EPDM blend reinforced with short jute fibers. For all the untreated and compatibilizer treated composites, the variation of mechanical and viscoelastic properties as a function of fiber loading (10, 20 and 30 wt %) and compatibilizer concentration (1, 2, and 3%) were evaluated. The flexural strength, flexural modulus, impact strength, and hardness increased with increasing both the fiber loading and the compatibilizer dose. The storage modulus (E,) and loss modulus (E,) of the HDPE-EPDM/jute fiber composites were recorded higher compared to those of the LDPE-EPDM/jute fiber composites at all level of fiber loading and compatibilizer doses. The tan, (damping efficiency) spectra showed a strong influence of the fiber loading and compatibilizer dose on the , relaxation process of polymer matrix in the composite. The thermo-oxidative stability was significantly enhanced for treated composites compared to untreated composites. Scanning electron microscopy investigation confirmed that the higher values of mechanical and viscoelastic properties of the treated composites compared to untreated composites is caused by improvement of fiber-matrix adhesion as result of compatibilizer treatment. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Direct fluorination of Twaron fiber and investigation of mechanical thermal and morphological properties of high density polyethylene and Twaron fiber compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008J. Maity Abstract Composites consisting of high density polyethylene (HDPE) reinforced with randomly oriented chopped Twaron fibers (both fluorinated and nonfluorinated) show a significant increase in mechanical and thermal properties. To increase the better fiber matrix adhesion, the Twaron fiber is surface fluorinated using elemental fluorine. The surface of the Twaron fiber becomes very rough and the diameter of Twaron fiber increases from , 12 to 14 ,m after fluorination. The composites were prepared using solution method to overcome the damage of the fiber. The tensile strength and the Young's modulus increases with increasing fiber content. The tensile strength and modulus of modified fiber (fluorinated Twaron fiber) composites is much higher than nonmodified fiber composites indicating that there is better mechanical interlocking between the modified fiber and the matrix. Thermal properties obtained from DSC and DTA-TG analysis of the fluorinated fiber composites are also improved. Contact angle measurements, as well as the surface energy measurements, indicate that the composites are more wettable and is maximum for fluorinated fiber composites i.e., surface energy for fluorinated fiber composites is highest. Crystallinity is also higher for fluorinated fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Isothermal crystallization of high density polyethylene and nanoscale calcium carbonate compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008Jiann-Wen HuangArticle first published online: 26 NOV 200 Abstract High density polyethylene (HDPE) and calcium carbonate (CaCO3) nanocomposites with maleic anhydride grafted HDPE (manPE) as a compatibilizer were prepared via compounding in a twin-screw extruder. The CaCO3 are well dispersed in the HDPE matrix from the observation of transmission electron microscope. The isothermal crystallization kinetics was studied by differential scanning calorimetry and simulated by Avrami and Tobin models. The nucleation constants and fold surface free energy were estimated from Lauritzen,Hoffman relation. The results indicate that both manPE and well-dispersed CaCO3 particles would act as nuclei to induce heterogeneous nucleation and enhance crystallization rate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Esterification effect of maleic anhydride on swelling properties of natural fiber/high density polyethylene compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007J. B. Naik Abstract The natural fibers (banana, hemp, and sisal) and high density polyethylene were taken for the preparation of natural fiber/polymer composites in different ratios of 40 : 60 and 45 : 55 (w/w). These fibers were esterified with maleic anhydride (MA) and the effect of esterification of MA was studied on swelling properties in terms of absorption of water, at ambient temperature, and steam. It was found that the steam penetrates more within lesserperiod of time than water at ambient temperature. Untreated fiber composites show more absorption of steam and water in comparison to MA-treated fiber composites. The more absorption of water was found in hemp fiber composites and less in sisal fiber composites. Steam absorption in MA-treated and untreated fiber composites are higher than the water absorption in respective fiber composites. The natural fiber/polymer composites containing low amount of fibers show less absorption of steam and water at ambient temperature than the composites containing more amount of fibers in respective fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source] Blends of high density polyethylene and ethylene/1-octene copolymers: Structure and properties,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Rameshwar Adhikari Abstract The morphology formation in the blends comprising a high density polyethylene (HDPE) and selected ethylene/1-octene copolymers (EOCs) was studied with variation of blend compositions using atomic force microscopy (AFM). The binary HDPE/EOC blends studied showed well phase-separated structures (macrophase separation) in consistence with individual melting and crystallization behavior of the blend components. For the blends comprising low 1-octene content copolymers, the lamellar stacks of one of the phases were found to exist side by side with that of the another phase giving rise to leaflet vein-like appearance. The formation of large HDPE lamellae particularly longer than in the pure state has been explained by considering the different melting points of the blend components. The study of strain induced structural changes in an HDPE/EOC blend revealed that at large strains, the extensive stretching of the soft EOC phase is accompanied by buckling of HDPE lamellar stack along the strain axis and subsequent microfibrils formation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1887,1893, 2007 [source] A novel bisphosphonate inhibits inflammatory bone resorption in a rat osteolysis model with continuous infusion of polyethylene particlesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2002Miho Iwase Abstract This study examined the inhibitory effect of a new bisphosphonate (TRK-530) on wear debris-mediated bone resorption in a rat osteolysis model involving continuous infusion of high density polyethylene (HDPE) particles. TRK-530 (TRK) is a novel synthetic bisphosphonate that has been shown to decrease the level of tumor necrosis factor alpha (TNF-,) in the bone marrow of rats with adjuvant arthritis. Forty Wistar rats were randomized to two groups (n = 20 each). In each rat, a Kirshner (K) wire was inserted into the femur and HDPE particles were continuously infused into the knee joint. Thereafter, the animals were subcutaneously injected with saline (control group) or 1 mg/kg of TRK (TRK group) every second day, and were sacrificed at 4 or 8 weeks after surgery. Radiographs obtained at the time of sacrifice were evaluated for periprosthetic osteolysis. We also examined the thickness of the reactive membrane as well as the number of osteoclast-like cells around the K-wire. In addition, we examined the expression of genes for bone-resorbing cytokines in the reactive membrane. Radiographic peri-implant osteolysis was more frequent in the control group compared with the TRK group at each time of assessment (p < 0.01). The interfacial membrane was significantly thinner in the TRK group compared with the control group (p < 0.01) and the average number of osteoclast-like cells around the K-wire was significantly fewer in the TRK group (p < 0.01). In addition, the expression of interleukin 1-alpha messenger ribonucleic acid (IL-1, mRNA) and TNF-, mRNA was suppressed in the TRK group at each time of assessment. We conclude that the TRK can inhibit the formation of inflammatory peri-implant osteolysis induced by HDPE particles. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] On Processing and Impact Deformation Behavior of High Density Polyethylene (HDPE),Calcium Carbonate NanocompositesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 2 2009Qiang Yuan Abstract Different processing approaches were adopted to obtain the best combination of strength and toughness. The approach that yielded superior properties was examined in detail to study the mechanical response of nanoscale calcium carbonate-reinforced high density polyethylene in conjunction with unreinforced high density polyethylene. The reinforcement of high density polyethylene with nanoscale calcium carbonate increases impact strength and is not accompanied by decrease in yield strength. The addition of nanoscale calcium carbonate to high density polyethylene alters the micromechanism of deformation from crazing-tearing in high density polyethylene to fibrillation in high density polyethylene,calcium carbonate nanocomposite. [source] Characterization of HDPE /Polyamide 6/ Nanocomposites Using Scanning-and Transmission Electron MicroscopyMACROMOLECULAR SYMPOSIA, Issue 1 2007Eleonora Erdmann Abstract Summary: Preparation and morphology of high density polyethylene (HDPE)/ polyamide 6 (PA 6)/modified clay nanocomposites were studied. The ability of PA 6 in dispersing clays was used to prepare modified delaminated clays, which were then mixed with HDPE. Mixing was performed using melt processing in a torque rheometer equipped with roller rotors. After etching the materials with boiling toluene and formic acid at room temperature, the morphology was examined by SEM analyses, showing that the PA 6 formed the continuous phase and HDPE the dispersed phase. X-ray diffraction patterns show that the (001) peak of the clay is dramatically decreased and shifted to lower angles, indicating that intercalated/exfoliated nanocomposites are obtained. TEM analyses confirmed the typical structure of exfoliated nanocomposites. A scheme for the mechanism of exfoliation and/or intercalation of these HDPE /PA 6/ /organoclay nanocomposites is proposed. [source] Effect of EPDM on Morphology, Mechanical Properties, Crystallization Behavior and Viscoelastic Properties of iPP+HDPE BlendsMACROMOLECULAR SYMPOSIA, Issue 1 2007Nina Vranjes Abstract Summary: Blends of isotactic polypropylene (iPP) and high density polyethylene (HDPE) with and without ethylene-propylene-diene (EPDM) terpolymer as compatibilizer were systematically investigated to determine the influence of the EPDM on blends properties. The morphology was studied by Scanning Electron Microscopy (SEM). Mechanical properties of investigated systems: tensile strength at break, elongation at break, yield stress and Izod impact strength were determined. Crystallization behavior was determined by Differential Scanning Calorimetry (DSC). Dynamic Mechanical Analysis (DMA) was used to determined the storage modulus (E,), loss modulus (E,), and loss tangent (tan ,). The PP+HDPE blend revealed poor adhesion between PP and HDPE phases. Finer morphology was obtained by EPDM addition in PP+HDPE blends and better interfacial adhesion. Addition of HDPE to PP decreased tensile strength at break, elongation and yield stress. Decrease of tensile strength and yield stress is faster with EPDM addition in PP+HDPE blends. Elongation at break and impact strength was significantly increased with EPDM addition. The addition of EPDM in PP+HDPE blends did not significantly change melting points of PP phase, while melting points of HDPE phase was slightly decreased in PP+HDPE+EPDM blends. The EPDM addition increased the percentage of crystallization (Xc) of PP in PP+HDPE blends. The increase of Xc of HDPE was found in the blend with HDPE as matrix. Dynamical mechanical analysis showed glass transitions of PP and HDPE phase, as well as the relaxation transitions of their crystalline phase. By addition of EPDM glass transitions (Tg) of HDPE and PP phases in PP+HDPE blends decreased. Storage modulus (E,) vs. temperatures (T) curves are in the region between E,/T curves of neat PP and HDPE. The decrease of E, values at 25,°C with EPDM addition in PP+HDPE blends is more pronounced. [source] Polymer Crystallization: A DSC Approach to Building the T-CR-T DiagramMACROMOLECULAR THEORY AND SIMULATIONS, Issue 2-3 2008Rosa Berlanga Abstract T-CR-T diagrams are one of the most reliable ways to predict the thermal behavior of material solidification from the melt. A brief description of solidification accounting for continuous cooling is presented for fast-crystallizing polymers. An isoconversional method is applied to the kinetic analysis of non-isothermal processes. The solidification process of different polymer materials: high density polyethylene based samples and mixtures of PEG with a pharmaceutical drug were analyzed by means of DSC. Several diagrams were constructed and the best agreement between experimental data and the calculated T-CR-T curves corresponds to the use of the isoconversional method. [source] Application of a computer model to evaluate the ability of plastics to act as functional barriersPACKAGING TECHNOLOGY AND SCIENCE, Issue 3 2003Jong-Koo Han Abstract A simulation model computer program, which accounts for not only the diffusion process inside the polymer but also partitioning of the contaminant between the polymer and the contacting phase, was developed based on a numerical treatment, the finite element method, to quantify migration through multilayer structures. The accuracy of the model in predicting migration was demonstrated successfully by comparing simulated results to experimental data. For this study, three-layer co-extruded high density polyethylene (HDPE) film samples, having a symmetrical structure with a contaminated core layer and virgin outer layers as the functional barriers, were fabricated with varying thickness of the outer layers and with a known amount of selected contaminant simulant, 3,5-di-t-butyl-4-hydroxytoluene (BHT), in the core layer. Migration of the contaminant simulant from the core layer to the liquid food simulants was determined experimentally as a function of the thickness of the outer layer at different temperatures. The computer program, developed as a total solution package for migration problems, can be applied not only to multilayer structures made with the same type of plastics but also to structures with different plastics, e.g. PP/PE/PP. This work might provide the potential for wider use of recycled plastic, especially polyolefins, which have lower barrier properties, in food packaging, and simplification of the task of convincing the FDA that adequate safety guarantees have been provided. Copyright © 2003 John Wiley & Sons, Ltd. [source] Thermal and morphological characterization of composites prepared by solution crystallization method of high-density polyethylene on carbon nanotubesPOLYMER COMPOSITES, Issue 5 2010Linghao He The morphology, nucleation, and crystallization of polyethylene/carbon nanotubes composites prepared by solution crystallization method of high density polyethylene on Multiwall Carbon Nanotubes (MWNTs) are studied. Transmission electron microscopy (TEM) results show that the center stems of MWNTs are decorated with lamellar crystals. The nonisothermal crystallization kinetics of pure PE and PE/MWNTs composites are investigated by differential scanning calorimetry at various cooling rates. It is found that the Avrami analysis modified by Jeziorny and Mo can describe the nonisothermal crystallization process of pure PE and PE/MWNTs very well. The difference in the value of exponent between PE and PE/MWNTs suggests that addition of the MWNTs influences the mechanism of nucleation and the growth of PE crystallites. On one hand, the increasing of temperature corresponding to the maximum rate of crystallization and the onset crystallization temperature and the study of the nucleation activity reveal that the inorganic component (MWNTs) can act as the nucleating agent to facilitate the crystallization of PE in the hybrids. On the other hand, the decreasing degree of crystallinity and the increasing of half-crystallization time imply that the MWNTs networks confine the crystallization of PE. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source] Effect of temperature on hygroscopic thickness swelling rate of composites from lignocellolusic fillers and HDPEPOLYMER COMPOSITES, Issue 11 2009Abdollah Najafi Effect of temperature on hygroscopic thickness swelling rate of lignocellolusic fillers/HDPE (high density polyethylene) composites was investigated. The composites were manufactured using a dry blend/hot press method. In this method, powder of plastic and dried powder of lignocellolusic material were mixed in high-speed mixer and then the mixed powder were pressed at 190°C. Lignocellolusic fillers/HDPE composites panels were made from virgin and recycled HDPE (as plastic) and wood sawdust and flour of rice hull (as filler) at 60% by weight filler loadings. Nominal density and dimensions of the panels were 1 g/cm3 and 35 × 35 × 1 cm3, respectively. Thickness swelling rate of manufactured wood plastic composites (WPCs) were evaluated by immersing them in water at 20, 40, and 60°C for reaching a certain value where no more thickness was swelled. A swelling model developed by Shi and Gardner [Compos. A, 37, 1276 (2006)] was used to study the thickness swelling process of WPCs, from which the parameter, swelling rate parameter, can be used to quantify the swelling rate. The results indicated that temperature has a significant effect on the swelling rate. The swelling rate increased as the temperature increased. The swelling model provided a good predictor of the hygroscopic swelling process of WPCs immersed in water at various temperatures. From the activation energy values calculated from the Arrhenius plots, the temperature had less effect on the thickness swelling rate for the composites including wood sawdust compared with the rice hull as filler and the composites including recycled compared with the virgin HDPE as plastic. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboardPOLYMER COMPOSITES, Issue 6 2008Majid Chaharmahali The possibility of producing wood-plastic panels using a melt blend/hot press method was studied in this research. The studied panels were compared with conventional medium density fiberboard (MDF) and particleboard (PB) panels. Wood-plastic panels were made from high density polyethylene (as resin) and MDF waste and PB waste (as natural fiber) at 60, 70, and 80% by weight fiber loadings. Nominal density and dimensions of the panels were 1 g/cm3 and 35 × 35 × 1 cm3, respectively. Mechanical properties of the panels including flexural modulus, flexural strength, screw and nail withdrawal resistances, and impact strength were studied. Results indicated that the mechanical properties of the composites were strongly affected by the proportion of the wood flour and polymer. Maximum values of flexural modulus of wood plastic panels were reached at 70% fiber content. Flexural strength, screw and nail withdrawal resistance, and impact strength of wood plastic composites declined with the increase in fiber content from 60 to 80%. This was attributed to the lack of compatibility between the phases. The produced panels outperformed conventional PB panels regarding their mechanical properties, which were acceptable when compared with MDF panels as well. The best feature in the produced panels was their screw withdrawal resistance, which is extremely important for screw joints in cabinet making. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers [source] Mechanical and oxygen barrier properties of organoclay-polyethylene nanocomposite filmsPOLYMER ENGINEERING & SCIENCE, Issue 7 2007Yang Zhong An organically modified montmorillonite was compounded with ethylene vinyl acetate copolymer (EVA), low density polyethylene (LDPE), and high density polyethylene (HDPE) in a twin-screw extruder. The resulting organoclay-polyethylene nanocomposites were then blown into films. Tensile properties and oxygen permeability of these nanocomposite films were investigated to understand the effects of organoclay on different types of polyethylene. It was found that the clay enhancing effects are function of the matrix. The mechanical and oxygen barrier properties of clay/EVA systems increased with clay loading. Both the tensile modulus and oxygen barrier of EVA doubled at 5 wt% clay. Maleic anhydride grafted polyethylene (MAPE) usually is used as a compatibilizer for LDPE and HDPE-based nanocomposites. However, the MAPEs were found to weaken the oxygen barrier of the PEs, especially for HDPE. This is believed to be a result of less compactness caused by the large side groups and the increase in polarity of the MAPEs. Incorporating 5 wt% clay improves the oxygen barrier by 30% and the tensile modulus by 37% for the LDPE/MAPE system. Incorporation of clay does not enhance the properties of the HDPE-based systems, likely due to large domain structure and poor bonding. Halpin,Tsai equation and the tortuous path equation were used to model the tensile modulus and oxygen permeability of the clay/EVA nanocomposite films. POLYM. ENG. SCI., 47:1101,1107, 2007. © 2007 Society of Plastics Engineers [source] Effect of clay on the morphology of binary blends of polyamide 6 with high density polyethylene and HDPE- graft -acrylic acidPOLYMER ENGINEERING & SCIENCE, Issue 5 2007Zhengping Fang Polyamide 6 (PA6)/HDPE/organo-bentonite (Oclay) and PA6/HDPE- grafted -acrylic acid (PEAA)/Oclay nanocomposites were prepared via melt compounding. The influence of Oclay on the morphology of composites was investigated. Scanning electron microscopy results revealed the size of the dispersed HDPE, and PEAA phase decreased with increasing Oclay content. Transmission electron microscopy and X-ray diffraction results revealed that the Oclay was predominately intercalated with some evidence of partial exfoliation. The majority of Oclay platelets were concentrated in the PA6 phase and in the interfacial region between PA6 and HDPE (PEAA). The Oclay platelets played the role of coupling species between the two polymers, increasing the interaction of the two phases in certain extent. These results were proved by FTIR and positron annihilation lifetime spectroscopy. Consequently, apparent emulsifying effect was induced. A schematic mechanism of the apparent compatibilization effect was presented. POLYM. ENG. SCI., 47:551,559, 2007. © 2007 Society of Plastics Engineers. [source] A comprehensive experimental study and numerical modeling of parison formation in extrusion blow molding,POLYMER ENGINEERING & SCIENCE, Issue 1 2007Azizeh-Mitra Yousefi Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1,13, 2007. © 2006 Society of Plastics Engineers [source] Functionalization of high density polyethylene with maleic anhydride in the melt state through ultrasonic initiationPOLYMER ENGINEERING & SCIENCE, Issue 4 2003Yuncan Zhang Grafting of maleic anhydride (MAH) onto high density polyethylene (HDPE) performed in the melt state through ultrasonic initiation by a laboratory-scale ultrasonic extrusion reactor was studied in this paper. The effect of sonic intesity on the amount of grafted MAH, viscosity-average molecular weight and melt flow index of the grafted product was investigated. The results show that the ultrasonic waves can obviously decrease the molecular weight of the grafted product and cause the increase of the amount of grated MAH, implying that the grafting reaction consists of the chain scission and the grafting reaction of the produced macroradicals with MAH. The percentage of grafting of the product amounts to 0.6%; its melt-flow index is between 0.5 and 2.0 g/10 min, depending upon ultrasonic intensity, MAH content and grafting temperature. Compared with the method of peroxide initiation, in this method the crosslinking reaction can be prevented easily through the allocation of ultrasonic intensity. The mechanical properties of the improved HDPE/GF composite produced by ultrasonic initiatives are higher than in those produced by peroxide initiatives. [source] A lithium ionomer of poly(ethylene-co-methacrylic acid) copolymer as compatibilizer for blends of poly(ethylene terephthalate) and high density polyethylenePOLYMER ENGINEERING & SCIENCE, Issue 11 2002A. Retolaza Blends of 75/25 poly(ethylene terephthalate) (PET)/high density polyethylene (HDPE) containing poly(ethylene-co-methacrylic acid) partially neutralized with lithium (PEMA-Li) were obtained by direct injection molding in an attempt (i) to ameliorate the poor performance of the binary blend and (ii) to find the best compatibilizer content. The presence of PEMA-Li caused a nucleation effect on PET, and a decrease in the crystalline content of HDPE. The compatibilizing effect of PEMA-Li was due to the combined effects of interaction at the interface and chemical reactions. The ternary blends showed a complex morphology, with two dispersed HDPE and PEMA-Li phases that contained a small internal dispersed phase, probably of PET. The compatibilizing effect of PEMA-Li was clearly shown by means of an impressive increase in the ductility and to a minor extent in the impact strength. The highest property improvement (ductility increase 1450%) appeared upon the addition of 45% PEMA-Li with respect to the HDPE phase, but taking into account the recycling interest, the ternary blend with the addition of roughly 22.5% PEMA-Li appears to be the most attractive. [source] Oil resistant thermoplastic elastomers of nitrile rubber and high density polyethylene blendsPOLYMER ENGINEERING & SCIENCE, Issue 1 2002D. K. Setua Different grades of oil resistant thermoplastic elastomers (TPE) based on blends of nitrile rubber (NBR) and high density polyethylene (HDPE) have been developed. Chemical treatment of HDPE to evolve compatibility with NBR and dynamic vulcanization with different curatives have been studied. Determination of physico-mechanical and thermal properties and relative crystallinity of these blends have been carried out. Oil resistance characteristics of the blends have been evaluated in different commercially used oils and fuels for applications as a substitute for NBR/polyvinyl chloride (PVC) blends. [source] The effect of shear on mechanical properties and orientation of HDPE/mica composites obtained via dynamic packing injection molding (DPIM)POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 1 2010Yufang Xiang Abstract The interfacial interaction and orientation of filler play important roles in the enhancement of mechanical performances for polymer/inorganic filler composites. Shear has been found to be a very effective way for the enhancement of interfacial interaction and orientation. In this work, we will report our recent efforts on exploring the development of microstructure of high density polyethylene (HDPE)/mica composites in the injection-molded bars obtained by so-called dynamic packing injection molding (DPIM), which imposed oscillatory shear on the melt during the solidification stage. The mechanical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA), and the crystal morphology, orientation, and the dispersion of mica were characterized by scanning electron microscopy and two-dimensional wide-angle X-ray scattering. Compared with conventional injection molding, DPIM caused an obvious increase in orientation for both HDPE and mica. More importantly, better dispersion and epitaxial crystallization of HDPE was observed on the edge of the mica in the injection-molded bar. As a result, increased tensile strength and modulus were obtained, accompanied with a decrease of elongation at break. The obtained data were treated by Halpin,Tsai model, and it turned out that this model could be also used to predict the stiffness of oriented polymer/filler composites. Copyright © 2009 John Wiley & Sons, Ltd. [source] Morphology and micromechanical properties of ethylene/1-octene copolymers and their blends with high density polyethylene,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2-3 2005R. Adhikari Abstract The relationship between morphology and deformation behavior of selected ethylene/1-octene copolymers (EOCs) and their blends with high density polyethylene (HDPE) was investigated. The copolymers showed, depending on the 1-octene content, different morphologies ranging from lamellar to worm-like crystalline domains. The binary HDPE/EOC blends studied, which showed well phase-separated structures consistent with individual melting and crystallization behavior of the blend components, were characterized by a wide range of mechanical and micromechanical properties. The study of strain induced structural changes in an HDPE/EOC blend revealed that at large strains, the extensive stretching of the soft EOC phase is accompanied by rotation of lamellar stack along the strain axis and subsequent fragmentation of the crystals forming beaded-string-like structures. A significant depression in microhardness was observed in the copolymers. In their blends with HDPE, a deviation in microhardness behavior from the additivity law was observed. Copyright © 2005 John Wiley & Sons, Ltd. [source] Morphology and thermal properties of a PC/PE blend with reactive compatibilizationPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2007Bo Yin Abstract Reactive compatibilization of immiscible polymers is becoming increasingly important and hence a representative study of a polycarbonate/high density polyethylene (PC/HDPE) system is the focus of this paper. A grafted copolymer PC- graft -ethylene- co -acrylic acid (PC- graft -EAA) was generated as a compatibilizer in situ during processing operation by ester and acid reaction between PC and ethylene-acrylic acid (EAA) in the presence of the catalyst dibutyl tin oxide (DBTO). As the polyethylene (PE) matrix does not play any part during the synthesis of the copolymer and since PC and EAA are also immiscible, to simplify the system, the influence of this copolymer formation at the interface between PC and EAA on rheological properties, phase morphology, and crystallization behavior for EAA/PC binary blends was first studied. The equilibrium torque increased with the DBTO content increasing in EAA/PC blends on Haake torque rheometer, indicating the in situ formation of the graft copolymer. Scanning electron microscopy (SEM) studies of cryogenically fractured surfaces showed a significant change at the distribution and dispersion of the dispersed phase in the presence of DBTO, compared with the EAA/PC blend without the catalyst. Differential scanning calorimetry (DSC) studies suggested that the heat of fusion of the EAA phase in PC/EAA blends with or without DBTO reduced with the formation of the copolymer compared with pure EAA. Then morphological studies and crystallization behavior of the uncompatibilized and compatibilized blends of PC/PE were studied as functions of EAA phase concentration and DBTO content. Morphological observations in PC/PE blends also revealed that on increasing the EAA content or adding the catalyst DBTO, the number of microvoids was reduced and the interface was intensive as compared to the uncompatibilized PC/PE blends. Crystallization studies indicated that PE crystallized at its bulk crystallization temperature. The degree of crystallinity of PE phase in PC/PE/EAA blends was also reduced with the addition of EAA and DBTO compared to the uncompatibilized blends of PC/PE, indicating the decrease in the degree of crystallinity was more in the presence of PC- graft -EAA. Copyright © 2007 John Wiley & Sons, Ltd. [source] |