Home About us Contact | |||
High Angle (high + angle)
Selected AbstractsMicrotexture and Grain Boundaries in Freestanding CVD Diamond Films: Growth and Twinning MechanismsADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Tao Liu Abstract Three groups of free-standing chemical vapor deposition (CVD) diamond films formed with variations in substrate temperature, methane concentration, and film thickness are analyzed using high-resolution electron back-scattering diffraction. Primarily {001}, {110}, and {111} fiber textures are observed. In addition, corresponding primary and higher order twinning components are found. As interfaces, high angle, low angle, primary twin, and secondary twin boundaries are observed. A growth and a twinning model are proposed based on the sp3 hybridization of the bond in the CH4 molecule that is used as the deposition medium. [source] Turbulence modelling of problem aerospace flowsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2006Paul G. Tucker Abstract Unsteady Reynolds averaged Navier,Stokes (URANS) and detached eddy simulation (DES) related approaches are considered for high angle of attack NACA0012 airfoil, wing,flap, generic tilt-rotor airfoil and double-delta geometry flows. These are all found to be problem flows for URANS models. For DES fifth-order upwinding is found too dissipative and the use of, for high speed flows, instability prone centred differencing essential. An existing hybrid ILES,RANS modelling approach, intended for flexible geometry, relatively high numerical dissipation codes is tested along with differential wall distance algorithms. The former gives promising results. The standard turbulence modelling approaches are found to give perhaps a surprising results variation. Results suggest that for the problem flows, the explicit algebraic stress and Menter shear stress transport (SST) URANS models are more accurate than the economical Spalart,Allmaras (SA). However, the explicit algebraic stress model (EASM) in its k,, form is impractically expensive to converge. Here, SA predictions lack a rotation correction term and this is likely to improve these results. Copyright © 2005 John Wiley & Sons, Ltd. [source] Origin of migmatites by deformation-enhanced melt infiltration of orthogneiss: a new model based on quantitative microstructural analysisJOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2008P. HASALOVÁ Abstract A detailed field study reveals a gradual transition from high-grade solid-state banded orthogneiss via stromatic migmatite and schlieren migmatite to irregular, foliation-parallel bodies of nebulitic migmatite within the eastern part of the Gföhl Unit (Moldanubian domain, Bohemian Massif). The orthogneiss to nebulitic migmatite sequence is characterized by progressive destruction of well-equilibrated banded microstructure by crystallization of new interstitial phases (Kfs, Pl and Qtz) along feldspar boundaries and by resorption of relict feldspar and biotite. The grain size of all felsic phases decreases continuously, whereas the population density of new phases increases. The new phases preferentially nucleate along high-energy like,like boundaries causing the development of a regular distribution of individual phases. This evolutionary trend is accompanied by a decrease in grain shape preferred orientation of all felsic phases. To explain these data, a new petrogenetic model is proposed for the origin of felsic migmatites by melt infiltration from an external source into banded orthogneiss during deformation. In this model, infiltrating melt passes pervasively along grain boundaries through the whole-rock volume and changes completely its macro- and microscopic appearance. It is suggested that the individual migmatite types represent different degrees of equilibration between the host rock and migrating melt during exhumation. The melt topology mimicked by feldspar in banded orthogneiss forms elongate pockets oriented at a high angle to the compositional banding, indicating that the melt distribution was controlled by the deformation of the solid framework. The microstructure exhibits features compatible with a combination of dislocation creep and grain boundary sliding deformation mechanisms. The migmatite microstructures developed by granular flow accompanied by melt-enhanced diffusion and/or melt flow. However, an AMS study and quartz microfabrics suggest that the amount of melt present did not exceed a critical threshold during the deformation to allow free movements of grains. [source] Nucleation and growth of myrmekite during ductile shear deformation in metagranitesJOURNAL OF METAMORPHIC GEOLOGY, Issue 7 2006L. MENEGON Abstract Myrmekite is extensively developed along strain gradients of continuous, lower amphibolite facies shear zones in metagranites of the Gran Paradiso unit (Western Alps). To evaluate the role of stress, strain energy and fluid phase in the formation of myrmekite, we studied a sample suite consisting of weakly deformed porphyric granites (WDGs), foliated granites (FGs) representative of intermediate strains, and mylonitic granites (MGs). In the protolith, most K-feldspar is microcline with different sets of perthite lamellae and fractures. In the WDGs, abundant quartz-oligoclase myrmekite developed inside K-feldspar only along preexisting perthite lamellae and fractures oriented at a high angle to the incremental shortening direction. In the WDGs, stress played a direct role in the nucleation of myrmekites along interfaces already characterized by high stored elastic strain because of lattice mismatch between K-feldspar and albite. In the FGs and MGs, K-feldspar was progressively dismembered along the growing network of microshear zones exploiting the fine-grained recrystallized myrmekite and perthite aggregates. This was accompanied by a more pervasive fluid influx into the reaction surfaces, and myrmekite occurs more or less pervasively along all the differently oriented internal perthites and fractures independently of the kinematic framework of the shear zone. In the MGs, myrmekite forms complete rims along the outer boundary of the small K-feldspar porphyroclasts, which are almost completely free of internal reaction interfaces. Therefore, we infer that the role of fluid in the nucleation of myrmekite became increasingly important as deformation progressed and outweighed that of stress. Mass balance calculations indicate that, in Al,Si-conservative conditions, myrmekite growth was associated with a volume loss of 8.5%. This resulted in microporosity within myrmekite that enhanced the diffusion of chemical components to the reaction sites and hence the further development of myrmekite. [source] Controls on englacial sediment deposition during the November 1996 jökulhlaup, Skei,arárjökull, IcelandEARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2001Matthew J. Roberts Abstract This paper presents sedimentary evidence for rapid englacial debris entrainment during jökulhlaups. Previous studies of jökulhlaup sedimentology have focused predominantly on proglacial impact, rather than depositional processes within glaciers. However, observations of supraglacial floodwater outbursts suggest that englacial sediment emplacement is possible during jökulhlaups. The November 1996 jökulhlaup from Skei,arárjökull, Iceland presented one of the first opportunities to examine englacial flood deposits in relation to former supraglacial outlets. Using observations from Skei,arárjökull, this paper identifies and explains controls on the deposition of englacial flood sediments and presents a qualitative model for englacial jökulhlaup deposition. Englacial jökulhlaup deposits were contained within complex networks of upglacier-dipping fractures. Simultaneous englacial deposition of fines and boulder-sized sediment demonstrates that englacial fracture discharge had a high transport capacity. Fracture geometry was an important control on the architecture of englacial jökulhlaup deposits. The occurrence of pervasively frozen flood deposits within Skei,arárjökull is attributed to freeze-on by glaciohydraulic supercooling. Floodwater, flowing subglacially or through upglacier-dipping fractures, would have supercooled as it was raised to the surface faster than its pressure-melting point could increase as glaciostatic pressure decreased. Evidence for floodwater contact with the glacier bed is supported by the ubiquitous occurrence of sheared diamict rip-ups and intra-clasts of basal ice within jökulhlaup fractures, deposited englacially some 200,350 m above the bed of Skei,arárjökull. Evidence for fluidal supercooled sediment accretion is apparent within stratified sands, deposited englacially at exceptionally high angles of rest in the absence of post-depositional disturbance. Such primary sediment structures cannot be explained unless sediment is progressively accreted to opposing fracture walls. Ice retreat from areas of former supraglacial outbursts revealed distinct ridges characterized by localized upwellings of sediment-rich floodwater. These deposits are an important addition to current models of englacial sedimentation and demonstrate the potential for post-jökulhlaup landform development. Copyright © 2001 John Wiley & Sons, Ltd. [source] CFD analysis of an oscillating wing at various reduced frequenciesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2009Farooq Umar Abstract The effect of various reduced frequencies has been examined for an oscillating aspect ratio 10 NACA 0015 wing. An unsteady, compressible three-dimensional (3D) Navier,Stokes code based on Beam and Warming algorithm with the Baldwin,Lomax turbulence model has been used. The code is validated for the study against published experimental data. The 3D unsteady flow field is simulated for reduced frequency values of 0.1, 0.2 and 0.3 for a fixed mean angle of attack position and fixed amplitude. The type of motion is sinusoidal harmonic. The force coefficients, pressure distributions and flow visualization show that at the given conditions the flow remains attached to the wing surface even at high angles of attack with no clear separation or typical light-to-deep category of dynamic stall. Increased magnitude of hysteresis and higher gradients are seen at higher reduced frequencies. The 3D effects are even found at midspan locations. In addition, the rate of decrease in lift near the wing tips compared with the wing root is not much like in the static cases. Copyright © 2008 John Wiley & Sons, Ltd. [source] Navy Omni-Directional Vehicle (ODV) Development: Where the Rubber Meets the DeckNAVAL ENGINEERS JOURNAL, Issue 4 2000H. McGowen ABSTRACT The Office of Naval Research sponsored the omnidirectional vehicle (ODV) development program of the Coastal Systems Station (CSS). CSS has investigated the application of ODV technology to Navy shipboard materials and ordnance handling. Under the Navy program, ODV technology was developed and a series of vehicles were built and tested. ODT technology was demonstrated to be applicable to the shipboard environment and shown to be able to overcome conditions of confined spaces, reduced traction, ship motion, decks heeled at high angles, and on-deck obstacles. This paper focuses on the Navy's demonstration of the capability of the ODV to operate under demanding environmental conditions, ODV mechanical simplicity, and adaptability of the technology for a wide range of applications. Potential commercial applications were identified in manufacturing and warehousing, and remotely controlled or autonomous platforms employed in nuclear facilities, hazardous waste cleanup, and other operations that require the movement and precise positioning of large, heavy objects. The Navy has implemented two cooperative research and development agreements (CRADA) and others are pending for further development and transfer of ODV technology to the private sector. [source] Electron beam,specimen interactions and their effect on high-angle annular dark-field imaging of dopant atoms within a crystalACTA CRYSTALLOGRAPHICA SECTION A, Issue 3 2010B. G. Mendis A Bloch wave model based on perturbation theory is used to analyse high-angle annular dark-field (HAADF) imaging of a substitutional and interstitial W atom in [111]-oriented body-centred-cubic Fe. For the substitutional atom the 1s Bloch state is scattered to high angles thereby producing HAADF dopant atom contrast. Intraband scattering of the 1s state is the strongest individual Bloch wave transition but collective interband scattering of the non-1s states to the 1s state leads to variations in the high-angle scattering with depth of the dopant atom. The non-1s states are Coulomb attracted towards the W atom thereby giving rise to an `atom focusing' effect similar to channelling. For the interstitial atom, which in the [111] orientation does not overlap with an atom column of the host lattice, high-angle scattering and Coulomb attraction takes place through the non-1s states. Scattering of the 1s state is, however, negligible. [source] |