Home About us Contact | |||
High Accretion Rates (high + accretion_rate)
Selected AbstractsRadio bimodality: Spin, accretion mode, or both?ASTRONOMISCHE NACHRICHTEN, Issue 2-3 2009M. Sikora Abstract A new scenario is suggested to explain a large diversity of the AGN radio properties and their dependence on the galaxy morphology. The scenario is based on the assumption that the growth of supermassive BHs is dominated by the accretion only during the quasar (high accretion rate) phase, otherwise , by mergers with less massive black holes. Following that, BHs are expected to spin much faster in giant ellipticals than in disk galaxies. Within the frame of the spin paradigm this explains the observed relation of the radio-dichotomy with the galaxy morphology. Various theoretical and observational aspects of such a dichotomy are discussed. In particular, the issue of the intermittency and suppression of a jet production at high accretion rates is addressed and a scenario for production of powerful, extended radio sources is drafted (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Calcium Accretion in Girls and Boys During Puberty: A Longitudinal AnalysisJOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2000Donald A. Bailey Abstract The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BMC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226,651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194,520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199,574 mg/day) and 284 mg/day for girls (58 mg/day; 171,459 mg/day). These longitudinal results are 27,34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium. [source] The ,,M relationship in pre-main sequence starsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2006C. J. Clarke ABSTRACT We examine the recent data and analysis of Natta et al. concerning the accretion rate on to young stars as a function of stellar mass, and conclude that the apparently steep dependence of accretion rate on mass is strongly driven by selection/detection thresholds. We argue that a convincing demonstration of a physical relationship between accretion and stellar mass requires further studies which, as is the case for Natta et al., include information on upper limits, and which quantify the possible incompleteness of the sample, at both low and high accretion rates. We point out that the distribution of detections in the -plane can in principle be used to test conventional accretion disc evolutionary models, and that higher sensitivity observations might be able to test the hypothesis of accelerated disc clearing at late times. [source] Radio bimodality: Spin, accretion mode, or both?ASTRONOMISCHE NACHRICHTEN, Issue 2-3 2009M. Sikora Abstract A new scenario is suggested to explain a large diversity of the AGN radio properties and their dependence on the galaxy morphology. The scenario is based on the assumption that the growth of supermassive BHs is dominated by the accretion only during the quasar (high accretion rate) phase, otherwise , by mergers with less massive black holes. Following that, BHs are expected to spin much faster in giant ellipticals than in disk galaxies. Within the frame of the spin paradigm this explains the observed relation of the radio-dichotomy with the galaxy morphology. Various theoretical and observational aspects of such a dichotomy are discussed. In particular, the issue of the intermittency and suppression of a jet production at high accretion rates is addressed and a scenario for production of powerful, extended radio sources is drafted (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |