Hippocampal Structure (hippocampal + structure)

Distribution by Scientific Domains


Selected Abstracts


Hippocampal structure and the action of cholinomimetic drugs

DRUG DEVELOPMENT RESEARCH, Issue 3 2002
John G. Csernansky
Abstract Cholinomimetic drugs have become the clinical standard for the treatment of patients with dementia of the Alzheimer type (DAT). However, uncertainty remains as to the proportion of patients that respond to such drugs, and how one might predict the capacity for response before treatment is begun. The thesis of the present review is that the neuroanatomical integrity of the hippocampus determines, at least in part, the capacity of DAT patients to respond to cholinomimetic drugs. Neuroimaging studies suggest that volume losses and other neuroanatomical deformities of the hippocampus are common in patients with even mild DAT. Moreover, more severe neuroanatomical deformities of the hippocampus are associated with more severe dementia symptoms and more rapid clinical decline. Animal research, including studies of cholinergic antagonists, glutamatergic antagonists, hippocampal lesions, and animals with mutant amyloid precursor protein genes, demonstrate that behavioral abnormalities similar to those found in DAT patients, especially those related to memory, are associated with hippocampal pathology. Cholinomimetic drugs, in particular, the cholinesterase inhibitors, have been shown to reverse some but not all of these behavioral abnormalities. More research is needed in DAT patients to determine whether an analysis of hippocampal structure or function can reliably predict the outcome of treatment with cholinomimetic drugs. Further work in animals is also needed to determine the limitations of cholinomimetic drugs for reversing various types of cognitive deficits, and to develop and test other pharmacological strategies for the treatment of DAT. Drug Dev. Res. 56:531,540, 2002. © 2002 Wiley-Liss, Inc. [source]


Genetic variation in brain-derived neurotrophic factor and human fear conditioning

GENES, BRAIN AND BEHAVIOR, Issue 1 2009
G. Hajcak
Brain-derived neurotrophic factor (BDNF) has been implicated in hippocampal-dependent learning processes, and carriers of the Met allele of the Val66Met BDNF genotype are characterized by reduced hippocampal structure and function. Recent nonhuman animal work suggests that BDNF is also crucial for amygdala-dependent associative learning. The present study sought to examine fear conditioning as a function of the BDNF polymorphism. Fifty-seven participants were genotyped for the BDNF polymorphism and took part in a differential-conditioning paradigm. Participants were shocked following a particular conditioned stimulus (CS+) and were also presented with stimuli that ranged in perceptual similarity to the CS+ (20, 40 or 60% smaller or larger than the CS+). The eye blink component of the startle response was measured to quantify fear conditioning; post-task shock likelihood ratings for each stimulus were also obtained. All participants reported that shock likelihood varied with perceptual similarity to the CS+ and showed potentiated startle in response to CS ± 20% stimuli. However, only the Val/Val group had potentiated startle responses to the CS+. Met allele carrying individuals were characterized by deficient fear conditioning , evidenced by an attenuated startle response to CS+ stimuli. Variation in the BDNF genotype appears related to abnormal fear conditioning, consistent with nonhuman animal work on the importance of BDNF in amygdala-dependent associative learning. The relation between genetic variation in BDNF and amygdala-dependent associative learning deficits is discussed in terms of potential mechanisms of risk for psychopathology. [source]


Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model

HIPPOCAMPUS, Issue 5 2010
Stephanie A. Morris
Abstract Adolescents diagnosed with an alcohol use disorder show neurodegeneration in the hippocampus, a region important for learning, memory, and mood regulation. This study examines a potential mechanism by which excessive alcohol intake, characteristic of an alcohol use disorder, produces neurodegeneration. As hippocampal neural stem cells underlie ongoing neurogenesis, a phenomenon that contributes to hippocampal structure and function, we investigated aspects of cell death and cell birth in an adolescent rat model of an alcohol use disorder. Immunohistochemistry of various markers along with Bromo-deoxy-Uridine (BrdU) injections were used to examine different aspects of neurogenesis. After 4 days of binge alcohol exposure, neurogenesis was decreased by 33 and 28% at 0 and 2 days after the last dose according to doublecortin expression. To determine whether this decrease in neurogenesis was due to effects on neural stem cell proliferation, quantification of BrdU-labeled cells revealed a 21% decrease in the dentate gyrus of alcohol-exposed brains. Cell survival and phenotype of BrdU-labeled cells were assessed 28 days after alcohol exposure and revealed a significant, 50% decrease in the number of surviving cells in the alcohol-exposed group. Reduced survival was supported by significant increases in the number of pyknotic-, FluoroJade B positive-, and TUNEL-positive cells. However, so few cells were TUNEL-positive that cell death is likely necrotic in this model. Although alcohol decreased the number of newborn cells, it did not affect the percentage of cells that matured into neurons (differentiation). Thus, our data support that in a model of an adolescent alcohol use disorder, neurogenesis is impaired by two mechanisms: alcohol-inhibition of neural stem cell proliferation and alcohol effects on new cell survival. Remarkably, alcohol inhibition of neurogenesis may outweigh the few dying cells per section, which implies that alcohol inhibition of neurogenesis contributes to hippocampal neurodegeneration in alcohol use disorders. © 2009 Wiley-Liss, Inc. [source]


Effect of corticosterone on developing hippocampus: Short-term and long-term outcomes

HIPPOCAMPUS, Issue 4 2009
Wen-Bin He
Abstract Many documents implicate that corticosterone plays a negative role in brain function, especially in learning and memory. However, less evidence confirms its direct actions on hippocampal development. In the work reported here, pro treatment, minimum corticosterone administration in infant mice, and con treatment, corticosterone deprivation by adrenalectomy, were used to examine the effects imposed by corticosterone on the structure and function of developing hippocampus. Our study shows that adrenalectomy induces decrease of plasma corticosterone levels and results in the impairment of learning performance and the degenerative changes not in CA regions of hippocampus but in dentate gyrus. Noteworthily, this damage effect is severer in 5-week-old mice than that in 10-week-old mice. In addition, the short-term effect of minimum corticosterone administration may accelerate the development of dentate gyrus of 10-day-old mice. Moreover, minimum corticosterone administration during infancy contributed to the learning performance and the structural integrity of hippocampal CA regions in different developing stages, while this phenomenon was not observed in dentate gyrus. In conclusion, corticosterone is necessary for the development of dentate gyrus, especially in relatively young individuals, and administration with minimum corticosterone in infancy has a long-term positive influence on the hippocampal structure and function in different developing stages. © 2008 Wiley-Liss, Inc. [source]


Heritability of hippocampal size in elderly twin men: Equivalent influence from genes and environment

HIPPOCAMPUS, Issue 6 2001
Edith V. Sullivan
Abstract Recent studies have established that environmental factors can modify hippocampal structure and enhance function in adult rodents, but the extent to which genes and the environment exert differential contributions to hippocampal structural integrity in humans is unknown. Here, we applied the twin model in a large sample of elderly twin men to examine in late life the balance of environmental and genetic effects on the size of the hippocampus in comparison with other brain structures. This study provides novel evidence that the volume of the hippocampus, as measured on MRI, is subject to substantially less genetic control than are comparison brain regions also measured: temporal horn volume, midsagittal area of the corpus callosum, and intracranial volume (ICV). In particular, about 60% of the temporal horn variance and 80% of the callosal and ICV variance was attributable to genetic influences, whereas only 40% of the hippocampal variance was attributable to genetic influences. These results suggest that environment, whether by itself or in interaction with genes, has the potential of exerting greater and possibly longer control in modifying hippocampal size than other brain regions that are under greater genetic control. Considering the potential of environmental modification of this structure suggested by lower heritability, the hippocampus appears well-suited to support the dynamic processes of encoding and consolidation of new, declarataive memories. Hippocampus 2001;11:754,762. © 2001 Wiley-Liss, Inc. [source]


Depletion of the neural precursor cell pool by glucocorticoids

ANNALS OF NEUROLOGY, Issue 1 2010
Shuang Yu MD
Objective Glucocorticoids (GCs) are indicated for a number of conditions in obstetrics and perinatal medicine; however, the neurodevelopmental and long-term neurological consequences of early-life GC exposure are still largely unknown. Preclinical studies have demonstrated that GCs have a major influence on hippocampal cell turnover by inhibiting neurogenesis and stimulating apoptosis of mature neurons. Here we examined the fate of the limited pool of neural progenitor cells (NPCs) after GC administration during neonatal development; the impact of this treatment on hippocampal structure was also studied. Methods Phenotype-specific genetic and antigenic markers were used to identify cultured NPCs at various developmental stages; the survival of these cells was monitored after exposure to the synthetic glucocorticoid dexamethasone (DEX). In addition, the effects of neonatal DEX treatment on the neurogenic potential of the rat hippocampus were examined by monitoring the incorporation of bromodeoxyuridine and expression of Ki67 antigen at various postnatal ages. Results Multipotent nestin-expressing NPCs and T,1-tubulin,expressing immature neurons succumb to GC-induced apoptosis in primary hippocampal cultures. Neonatal GC treatment results in marked apoptosis among the proliferating population of cells in the dentate gyrus, depletes the NPC pool, and leads to significant and sustained reductions in the volume of the dentate gyrus. Interpretation Both NPCs and immature neurons in the hippocampus are sensitive to the proapoptotic actions of GCs. Depletion of the limited NPC pool during early life retards hippocampal growth, thus allowing predictions about the potential neurological and psychiatric consequences of neonatal GC exposure. ANN NEUROL 2010;67:21,30 [source]


Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool

DEVELOPMENTAL DYNAMICS, Issue 7 2008
Nina Solberg
Abstract Canonical Wnt signaling is crucial for the correct development of both cortical and hippocampal structures in the dorsal telencephalon. In this study, we examined the role of the canonical Wnt signaling in the dorsal telencephalon of mouse embryos at defined time periods by inhibition of the pathway with ectopic expression of Dkk1. Transgenic mice with the D6-driven Dkk1 gene exhibited reduced canonical Wnt signaling in the cortex and hippocampus. As a result, all hippocampal fields were reduced in size. Neurogenesis in the dentate gyrus was severely reduced both in the premigratory and migratory progenitor pool. The lower number of progenitors in the dentate gyrus was not rescued after migration to the subgranular zone and thus the dentate gyrus lacked the entire internal blade and a part of the external blade from postnatal to adult stages. Developmental Dynamics 237:1799,1811, 2008. © 2008 Wiley-Liss, Inc. [source]


Inactivation of the gene for the nuclear receptor tailless in the brain preserving its function in the eye

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2007
Thorsten Belz
Abstract During embryogenesis, tailless, an orphan member of the nuclear receptor family, is expressed in the germinal zones of the brain and the developing retina, and is involved in regulating the cell cycle of progenitor cells. Consequently, a deletion of the tailless gene leads to decreased cell number with associated anatomical defects in the limbic system, the cortex and the eye. These structural abnormalities are associated with blindness, increased aggressiveness, poor performance in learning paradigms and reduced anxiousness. In order to assess the contribution of blindness to the behavioural changes, we established tailless mutant mice with intact visual abilities. We generated a mouse line in which the second exon of the tailless gene is flanked by loxP sites and crossed these animals with a transgenic line expressing the Cre recombinase in the neurogenic area of the developing brain, but not in the eye. The resulting animals have anatomically indistinguishable brains compared with tailless germline mutants, but are not blind. They are less anxious and much more aggressive than controls, like tailless germline mutants. In contrast to germline mutants, the conditional mutants are not impaired in fear conditioning. Furthermore, they show good performance in the Morris water-maze despite severely reduced hippocampal structures. Thus, the pathological aggressiveness and reduced anxiety found in tailless germline mutants are due to malformations caused by inactivation of the tailless gene in the brain, but the poor performance of tailless null mice in learning and memory paradigms is dependent on the associated blindness. [source]