Home About us Contact | |||
Hippocampal Plasticity (hippocampal + plasticity)
Selected AbstractsStress experienced in utero reduces sexual dichotomies in neurogenesis, microenvironment, and cell death in the adult rat hippocampusDEVELOPMENTAL NEUROBIOLOGY, Issue 5 2008Chitra D. Mandyam Abstract Hippocampal function and plasticity differ with gender, but the regulatory mechanisms underlying sex differences remain elusive and may be established early in life. The present study sought to elucidate sex differences in hippocampal plasticity under normal developmental conditions and in response to repetitive, predictable versus varied, unpredictable prenatal stress (PS). Adult male and diestrous female offspring of pregnant rats exposed to no stress (control), repetitive stress (PS-restraint), or a randomized sequence of varied stressors (PS-random) during the last week of pregnancy were examined for hippocampal proliferation, neurogenesis, cell death, and local microenvironment using endogenous markers. Regional volume was also estimated by stereology. Control animals had comparable proliferation and regional volume regardless of sex, but females had lower neurogenesis compared to males. Increased cell death and differential hippocampal precursor kinetics both appear to contribute to reduced neurogenesis in females. Reduced local interleukin-1beta (IL-1,) immunoreactivity (IR) in females argues for a mechanistic role for the anti-apoptotic cytokine in driving sex differences in cell death. Prenatal stress significantly impacted the hippocampus, with both stress paradigms causing robust decreases in actively proliferating cells in males and females. Several other hippocampal measures were feminized in males such as precursor kinetics, IL-1,-IR density, and cell death, reducing or abolishing some sex differences. The findings expand our understanding of the mechanisms underlying sex differences and highlight the critical role early stress can play on the balance between proliferation, neurogenesis, cell death, and hippocampal microenvironment in adulthood. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source] A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002S. Hulo Abstract The growth-associated protein GAP-43 (or neuromodulin or B-50) plays a critical role during development in mechanisms of axonal growth and formation of synaptic networks. At later times, GAP-43 has also been implicated in the regulation of synaptic transmission and properties of plasticity such as long-term potentiation. In a molecular approach, we have analyzed transgenic mice overexpressing different mutated forms of GAP-43 or deficient in GAP-43 to investigate the role of the molecule in short-term and long-term plasticity. We report that overexpression of a mutated form of GAP-43 that mimics constitutively phosphorylated GAP-43 results in an enhancement of long-term potentiation in CA1 hippocampal slices. This effect is specific, because LTP was affected neither in transgenic mice overexpressing mutated forms of non-phosphorylatable GAP-43 nor in GAP-43 deficient mice. The increased LTP observed in transgenic mice expressing a constitutively phosphorylated GAP-43 was associated with an increased paired-pulse facilitation as well as an increased summation of responses during high frequency bursts. These results indicate that, while GAP-43 is not necessary for LTP induction, its phosphorylation may regulate presynaptic properties, thereby affecting synaptic plasticity and the induction of LTP. [source] The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depressionHIPPOCAMPUS, Issue 7 2010Astrid Bjørnebekk Abstract One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response. © 2009 Wiley-Liss, Inc. [source] Stress and hippocampal plasticity: implications for the pathophysiology of affective disordersHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue S1 2001Bruce S. McEwen Abstract The hippocampal formation, a structure involved in declarative, spatial and contextual memory, is a particularly sensitive and vulnerable brain region to stress and stress hormones. The hippocampus shows a considerable degree of structural plasticity in the adult brain. Stress suppresses neurogenesis of dentate gyrus granule neurons, and repeated stress causes atrophy of dendrites in the CA3 region. In addition, ovarian steroids regulate synapse formation during the estrous cycle of female rats. All three forms of structural remodeling of the hippocampus are mediated by hormones working in concert with excitatory amino acids (EAA) and N -methyl- D -aspartate (NMDA) receptors. EAA and NMDA receptors are also involved in neuronal death that is caused in pyramidal neurons by seizures and by ischemia and prolonged psychosocial stress. In the human hippocampus, magnetic resonance imaging studies have shown that there is a selective atrophy in recurrent depressive illness, accompanied by deficits in memory performance. Hippocampal atrophy may be a feature of affective disorders that is not treated by all medications. From a therapeutic standpoint, it is essential to distinguish between permanent damage and reversible atrophy in order to develop treatment strategies to either prevent or reverse deficits. In addition, remodeling of brain cells may occur in other brain regions. Possible treatments are discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source] Differential Effects of Stress on Adult Hippocampal Cell Proliferation in Low and High Aggressive MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2007A. H. Veenema Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder generally show opposing behavioural coping responses to environmental challenges. LAL mice, unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal axis and show an enhanced expression of markers for hippocampal plasticity. The present study aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU) over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between coping responses and hippocampal cell proliferation, in which corticosterone may be one of the determinants of line differences in cell proliferation responses to environmental challenges. [source] |