Hippocampal Place Cells (hippocampal + place_cell)

Distribution by Scientific Domains


Selected Abstracts


Space and context in the temporal cortex

HIPPOCAMPUS, Issue 9 2007
David K. Bilkey
Abstract The hippocampus has a critical role in certain kinds of spatial memory processes. Hippocampal "place" cells, fire selectively when an animal is in a particular location within the environment. It is thought that this activity underlies a representation of the environment that can be used for memory-based spatial navigation. But how is this representation constructed and how is it "read"? A simple mechanism, based on place field density across an environment, is described that could allow hippocampal representations to be "read" by other brain regions for the purpose of navigation. The possible influence of activity in neighboring brain regions such as the perirhinal cortex, and pre- and para-subiculum on the construction of the hippocampal spatial representation is then discussed. © 2007 Wiley-Liss, Inc. [source]


Functional interaction between the associative parietal cortex and hippocampal place cell firing in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005
Etienne Save
Abstract The hippocampus and associative parietal cortex (APC) both contribute to spatial memory but the nature of their functional interaction remains unknown. To address this issue, we investigated the effects of APC lesions on hippocampal place cell firing in freely moving rats. Place cells were recorded from APC-lesioned and control rats as they performed a pellet-chasing task in a circular arena containing three object cues. During successive recording sessions, cue manipulations including object rotation in the absence of the rat and object removal in the presence of the rat were made to examine the control exerted by the objects or by non-visual intramaze cues on place field location, respectively. Object rotations resulted in equivalent field rotation for all cells in control rats. In contrast, a fraction of place fields in APC-lesioned rats did not rotate but remained stable relative to the room. Object removal produced different effects in APC-lesioned and control rats. In control rats, most place fields remained stable relative to the previous object rotation session, indicating that they were anchored to olfactory and/or idiothetic cues. In APC-lesioned rats, a majority of place fields shifted back to their initial, standard location, thus suggesting that they relied on uncontrolled background cues to maintain place field stability. These results provide strong evidence that the hippocampus and the APC cooperate in the formation of spatial memory and suggest that the APC is involved in elaboration of a hippocampal map based on proximal landmarks. [source]


Spatial firing properties of lateral septal neurons

HIPPOCAMPUS, Issue 8 2006
Yusaku Takamura
Abstract The present study describes the spatial firing properties of neurons in the lateral septum (LS). LS neuronal activity was recorded in rats as they performed a spatial navigation task in an open field. In this task, the rat acquired an intracranial self-stimulation reward when it entered a certain place, a location that varied randomly from trial to trial. Of 193 neurons recorded in the LS, 81 showed place-related activity. The majority of the tested neurons changed place-related activity when spatial relations between environmental cues were altered by rotating intrafield (proximal) cues. The comparison of place activities between LS place-related neurons recorded in the present study and hippocampal place cells recorded in our previous study, using identical behavioral and recording procedures, revealed that spatial parameters (spatial information content, coherence, and cluster size) were smaller in the LS than in the hippocampus. Of the 193 LS neurons, 86 were influenced by intracranial self-stimulation rewards; 31 of these 86 were also place-related. These results, together with previous anatomical and behavioral observations, suggest that the spatial information sent from the hippocampus to the LS is modulated by and interacts with signals related to reward in the LS. © 2006 Wiley-Liss, Inc. [source]


Stability of hippocampal place cell activity across the rat estrous cycle,

HIPPOCAMPUS, Issue 2 2005
Jennifer Tropp
Abstract Findings from both in vitro and in vivo studies have shown that estrogen exerts pronounced effects on hippocampal morphology and physiology. The degree to which these molecular findings influence hippocampal processing in freely behaving animals is unclear. The present study assessed the effect of the estrous cycle on hippocampal place cells in naturally cycling rats during two behavioral states. Female Sprague-Dawley rats were trained to alternate on a U-shaped runway for food reinforcement. Single-unit recordings of hippocampal CA1 cells were conducted under two conditions: (1) at rest on a holder, and (2) running on the maze. Spatial firing characteristics of the cells were examined at different stages of the estrous cycle (i.e., diestrus, proestrus, and estrus). Specifically, information was collected on (1) mean firing rates; (2) basic place field parameters; and (3) changes in the firing dynamics of these cells (e.g., burst properties). The findings showed a decrease in mean firing rate on the maze during proestrus. However, other basic measures of spatial tuning and burst properties were unchanged. The current study suggests that there is relative stability of hippocampal place cells across the estrous cycle during a well-trained task. © 2004 Wiley-Liss, Inc. [source]


Role of active movement in place-specific firing of hippocampal neurons

HIPPOCAMPUS, Issue 1 2005
Eun Young Song
Abstract The extent of external and internal factors contributing to location-specific firing of hippocampal place cells is currently unclear. We investigated the role of active movement in location-specific firing by comparing spatial firing patterns of hippocampal neurons, while rats either ran freely or rode a motorized cart on the same circular track. Most neurons changed their spatial firing patterns across the two navigation conditions ("remapping"), and they were stably maintained across repeated active or passive navigation sessions. These results show that active movement is a critical factor in determining place-specific firing of hippocampal neurons. This could explain why passive displacement is not an effective way of acquiring spatial knowledge for subsequent active navigation in an unfamiliar environment. © 2004 Wiley-Liss, Inc. [source]


Representation of place by monkey hippocampal neurons in real and virtual translocation

HIPPOCAMPUS, Issue 2 2003
Etsuro Hori
Abstract The hippocampal formation (HF) is hypothesized as a neuronal substrate of a cognitive map, which represents environmental spatial information by an ensemble of neural activity. However, the relationships between the hippocampal place cells and the cognitive map have not been clarified in monkeys. The present study was designed to investigate how activity patterns of place-selective neurons encode spatial relationships of various environmental stimuli; to do this, we used multidimensional scaling (MDS) for hippocampal neuronal activity in the monkey during the performance of real and virtual translocation. Of 389 neurons recorded from the monkey HF and parahippocampal gyrus (PH), 166 had place fields that displayed increased activity in a specific area of an experimental field and/or on a monitor (place-selective neurons). The MDS transformed relationships among the 16 places in the experimental field and the monitor, expressed as correlation coefficients between all possible pairs of two places based on the 166 place-selective responses, into geometric relationships in a two-dimensional MDS space. In the real translocation tasks, the 16 places were distributed throughout the MDS space, and their relative positions were well correlated to real positions in the experimental laboratory. However, the correlation between the MDS space and real arrangements was significantly smaller in virtual than real translocation tasks. The present results strongly suggest that activity patterns of the HF and PH neurons represent spatial information and might provide a neurophysiological basis for a cognitive map. Hippocampus 2003;13:190,196. © 2003 Wiley-Liss, Inc. [source]