Home About us Contact | |||
Hippocampal Involvement (hippocampal + involvement)
Selected AbstractsCholinergic and noncholinergic septal neurons modulate strategy selection in spatial learningEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2001Jonathan F. X. Cahill Abstract Rats solving a simple spatial discrimination task in a plus maze initially employ a place-learning strategy, then switch to a motor response strategy. The hippocampus is required for the use of a place-learning strategy in this task. Rats with 192 IgG-saporin lesions of the medial septum/vertical limb of the diagonal band (MS/VDB), that selectively removed cholinergic neurons projecting to the hippocampus, were significantly facilitated in acquisition of the spatial discrimination, and switched from place to response strategies just as control rats did. Rats with ibotenic acid lesions of the MS/VDB, that produced cell loss in the MS/VDB but little damage to cholinergic neurons, were significantly impaired in acquiring the spatial discrimination and did not reliably employ either a place or response strategy at any point in training. This suggests that the MS/VDB modulates hippocampal involvement in place learning, but that cholinergic MS/VDB neurons are neither necessary nor sufficient for using a place strategy to solve a spatial discrimination. [source] The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memoryHIPPOCAMPUS, Issue 1 2010Lee Ryan Abstract This study examined the involvement of medial temporal lobe, especially the hippocampus, in processing spatial and nonspatial relations using episodic and semantic versions of a relational judgment task. Participants studied object arrays and were tested on different types of relations between pairs of objects. Three prevalent views of hippocampal function were considered. Cognitive map theory (O'Keefe and Nadel (1978) The Hippocampus as a Cognitive Map. USA: Oxford University Press) emphasizes hippocampal involvement in spatial relational tasks. Multiple trace theory (Nadel and Moscovitch (1997) Memory consolidation, retrograde amnesia and the hippocampal complex Curr Opin Neurobiol 7:217,227) emphasizes hippocampal involvement in episodic tasks. Eichenbaum and Cohen's ((2001) From Conditioning to Conscious Recollection: Memory Systems of the Brain. USA: Oxford University Press) relational theory predicts equivalent hippocampal involvement in all relational tasks within both semantic and episodic memory. The fMRI results provided partial support for all three theories, though none of them fit the data perfectly. We observed hippocampal activation during all relational tasks, with increased activation for spatial compared to nonspatial relations, and for episodic compared to semantic relations. The placement of activation along the anterior-posterior axis of the hippocampus also differentiated the conditions. We suggest a view of hippocampal function in memory that incorporates aspects of all three theories. © 2009 Wiley-Liss, Inc. [source] The retrieval of learned sequences engages the hippocampus: Evidence from fMRIHIPPOCAMPUS, Issue 9 2009Robert S. Ross Abstract Computational models suggest that the hippocampus plays an important role in the retrieval of sequences. However, empirical evidence supporting hippocampal involvement during sequence retrieval is lacking. The current study used functional magnetic resonance imaging (fMRI) to examine the role of the human hippocampus during the learning and retrieval of sequences. Participants were asked to learn four sequences comprised of six faces each. An overlapping condition, where sequences shared common elements, was comprised of two sequences in which two identical faces were shown as the middle images of both sequences. A nonoverlapping condition contained two sequences that did not share any faces between them. A third random condition contained two sets of six faces that were always presented in a random order. The fMRI data were split into a learning phase and an experienced phase based upon each individual's behavioral performance. Patterns of hippocampal activity during presentation, delay, and choice periods were assessed both during learning (learning phase) and after subjects learned the sequences to criteria (experienced phase). The results revealed hippocampal activation during sequence learning, consistent with previous findings in rats and humans. Critically, the current results revealed hippocampal activation during the retrieval of learned sequences. No difference in hippocampal activation was seen between the overlapping and nonoverlapping sequences during either sequence learning or retrieval of sequences. The results extend our current knowledge by providing evidence that the hippocampus is active during the retrieval of learned sequences, consistent with current computational models of sequence learning and retrieval. © 2009 Wiley-Liss, Inc. [source] Clinical application of measurement of hippocampal atrophy in degenerative dementiasHIPPOCAMPUS, Issue 6 2009Josephine Barnes Abstract Hippocampal atrophy is a characteristic and early feature of Alzheimer's disease. Volumetry of the hippocampus using T1-weighted magnetic resonance imaging (MRI) has been used not only to assess hippocampal involvement in different neurodegenerative diseases as a potential diagnostic biomarker, but also to understand the natural history of diseases, and to track changes in volume over time. Assessing change in structure circumvents issues surrounding interindividual variability and allows assessment of disease progression. Disease-modifying effects of putative therapies are important to assess in clinical trials and are difficult using clinical scales. As a result, there is increasing use of serial MRI in trials to detect potential slowing of atrophy rates as an outcome measure. Automated and yet reliable methods of quantifying such change in the hippocampus would therefore be very valuable. Algorithms capable of measuring such changes automatically have been developed and may be applicable to predict decline to a diagnosis of dementia in the future. This article details the progress in using MRI to understand hippocampal changes in the degenerative dementias and also describes attempts to automate hippocampal segmentation in these diseases. © 2009 Wiley-Liss, Inc. [source] Ventral hippocampal involvement in temporal order, but not recognition, memory for spatial informationHIPPOCAMPUS, Issue 3 2008John G. Howland Abstract The hippocampus is critical for spatial memory. Recently, subregional differences in the function of hippocampus have been described in a number of behavioral tasks. The present experiments assessed the effects of reversibly lesioning either the dorsal (dHip) or ventral hippocampus (vHip) on spontaneous tests of spatial recognition and temporal order memory. We report that although the dHip is necessary for spatial recognition memory (RM) (distinguishing a novel from a familiar spatial location), the vHip is involved in temporal order memory (the capacity to distinguish between two spatial locations visited at different points in time), but not RM. These findings and others are consistent with the hypothesis that temporal order memory is supported by an integrated circuit of limbic areas including the vHip and the medial prefrontal cortex. © 2007 Wiley-Liss, Inc. [source] Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J miceHIPPOCAMPUS, Issue 1 2008Petra J.J. Baarendse Abstract The inferior performance of DBA/2 mice when compared to C57BL/6 mice in hippocampus-dependent behavioral tasks including contextual fear conditioning has been attributed to impaired hippocampal function. However, DBA/2J mice have been reported to perform similarly or even better than C57BL/6J mice in the passive avoidance (PA) task that most likely also depends on hippocampal function. The apparent discrepancy in PA versus fear conditioning performance in these two strains of mice was investigated using an automated PA system. The aim was to determine whether these two mouse strains utilize different strategies involving a different contribution of hippocampal mechanisms to encode PA. C57BL/6J mice exhibited significantly longer retention latencies than DBA/2J mice when tested 24 h after training irrespective of the circadian cycle. Dorsohippocampal NMDA receptor inhibition by local injection of the selective antagonist DL -2-amino-5-phosphonovaleric acid (AP5, 3.2 ,g/mouse) before training resulted in impaired PA retention in C57BL/6J but not in DBA/2J mice. Furthermore, nonreinforced pre-exposure to the PA system before training caused a latent inhibition-like reduction of retention latencies in C57BL/6J, whereas it improved PA retention in DBA/2J mice. These pre-exposure experiments facilitated the discrimination of hippocampal involvement without local pharmacological intervention. The results indicate differences in PA learning between these two strains based on a different NMDA receptor involvement in the dorsal hippocampus in this emotional learning task. We hypothesize that mouse strains can differ in their PA learning performance based on their relative ability to form associations on the basis of unisensory versus multisensory contextual/spatial cues that involve hippocampal processing. © 2007 Wiley-Liss, Inc. [source] |