Hippocampal Formation (hippocampal + formation)

Distribution by Scientific Domains


Selected Abstracts


Topographical and laminar distribution of cortical input to the monkey entorhinal cortex

JOURNAL OF ANATOMY, Issue 2 2007
A. Mohedano-Moriano
Abstract Hippocampal formation plays a prominent role in episodic memory formation and consolidation. It is likely that episodic memory representations are constructed from cortical information that is mostly funnelled through the entorhinal cortex to the hippocampus. The entorhinal cortex returns processed information to the neocortex. Retrograde tracing studies have shown that neocortical afferents to the entorhinal cortex originate almost exclusively in polymodal association cortical areas. However, the use of retrograde studies does not address the question of the laminar and topographical distribution of cortical projections within the entorhinal cortex. We examined material from 60 Macaca fascicularis monkeys in which cortical deposits of either 3H-amino acids or biotinylated dextran-amine as anterograde tracers were made into different cortical areas (the frontal, cingulate, temporal and parietal cortices). The various cortical inputs to the entorhinal cortex present a heterogeneous topographical distribution. Some projections terminate throughout the entorhinal cortex (afferents from medial area 13 and posterior parahippocampal cortex), while others have more limited termination, with emphasis either rostrally (lateral orbitofrontal cortex, agranular insular cortex, anterior cingulate cortex, perirhinal cortex, unimodal visual association cortex), intermediate (upper bank of the superior temporal sulcus, unimodal auditory association cortex) or caudally (parietal and retrosplenial cortices). Many of these inputs overlap, particularly within the rostrolateral portion of the entorhinal cortex. Some projections were directed mainly to superficial layers (I,III) while others were heavier to deep layers (V,VI) although areas of dense projections typically spanned all layers. A primary report will provide a detailed analysis of the regional and laminar organization of these projections. Here we provide a general overview of these projections in relation to the known neuroanatomy of the entorhinal cortex. [source]


Transcriptional Regulation of Caspases in Experimental Pneumococcal Meningitis

BRAIN PATHOLOGY, Issue 3 2001
Matthias von Mering
Apoptosis and necrosis in brain account for neurological sequelae in survivors of bacterial meningitis. In meningitis, several mechanisms may trigger death pathways leading to activation of transcription factors regulating caspases mRNA synthesis. Therefore, we used a multiprobe RNA protection assay (RPA) to examine the expression of 9 caspase-mRNA in the course of experimental Streptococcus pneumoniae meningitis in mouse brain. Caspase-6, -7 and -11 mRNA were elevated 6 hours after infection. 12 hours after infection caspases-1, -2, -8 and -12 mRNA rose. Caspase-14 mRNA was elevated 18 h and caspase-3 mRNA 24 h after infection. In situ hybridization detected caspases-3, -8, -11 and -12 mRNA in neurons of the hippocampal formation and neocortex. Development of sepsis was paralleled by increased transcription of caspases mRNA in the spleen. In TNF,-deficient mice all caspases examined were less upregulated, in TNF-receptor 1/2 knockout mice caspases-1, -2, -7, -11 and -14 mRNA were increased compared to infected control animals. In caspase-1 deficient mice, caspases-11, and -12 mRNA levels did not rise in meningitis indicating the necessity of caspase-1 activating these caspases. Hippocampal formations of newborn mice incubated with heat-inactivated S. pneumoniae R6 showed upregulation of caspase-1, -3, -11 and -12 mRNA. These observations suggest a tightly regulated caspases network at the transcriptional level in addition to the known cascade at the protein level. [source]


Ethanol neurotoxicity and dentate gyrus development

CONGENITAL ANOMALIES, Issue 3 2008
Takanori Miki
ABSTRACT Maternal alcohol ingestion during pregnancy adversely affects the developing fetus, often leading to fetal alcohol syndrome (FAS). One of the most severe consequences of FAS is brain damage that is manifested as cognitive, learning, and behavioral deficits. The hippocampus plays a crucial role in such abilities; it is also known as one of the brain regions most vulnerable to ethanol-induced neurotoxicity. Our recent studies using morphometric techniques have further shown that ethanol neurotoxicity appears to affect the development of the dentate gyrus in a region-specific manner; it was found that early postnatal ethanol exposure causes a transitory deficit in the hilus volume of the dentate gyrus. It is strongly speculated that such structural modifications, even transitory ones, appear to result in developmental abnormalities in the brain circuitry and lead to the learning disabilities observed in FAS children. Based on reports on possible factors deciding ethanol neurotoxicity to the brain, we review developmental neurotoxicity to the dentate gyrus of the hippocampal formation. [source]


Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus

EPILEPSIA, Issue 2010
Maria-Leonor Lopez-Meraz
Summary Status epilepticus in the immature brain induces neuronal injury in the hippocampal formation, but the mode and mechanism of death are poorly understood. Our laboratory has recently investigated the role of caspase-3, -8, and -9 in neuronal injury, using a lithium,pilocarpine model of status epilepticus in 2-week-old rat pups. Our results showed that dying neurons in the dentate gyrus and CA1-subiculum area do not share the same mechanism of death. In CA1-subiculum, caspase-8 upregulation preceded caspase-3 activation in morphologically necrotic neurons. The pan-caspase inhibitor Q-VD-OPH reduced CA1 damage, showing that caspases contribute to status epilepticus,induced necrosis. In the dentate gyrus, dying neurons were caspase-9 and -3 immunoreactive and morphologically apoptotic. It is not clear why the same seizures cause different types of cell death in neurons that are connected in series along the same hippocampal circuit, but the apoptotic dentate neurons express doublecortin, and do not express calbindin-D28k, suggesting that their immaturity may be a factor in producing an apoptotic mode of death. [source]


Voxel-based morphometry of sporadic epileptic patients with mesiotemporal sclerosis

EPILEPSIA, Issue 4 2010
Angelo Labate
Summary Purpose:, In refractory temporal lobe epilepsy (rTLE), gray matter (GM) abnormalities are not confined to the hippocampus but also are found in extrahippocampal structures. Very recently we observed in mild TLE (mTLE) with or without mesiotemporal sclerosis (MTS), GM reductions in regions outside the presumed epileptogenic focus. To date, there are no studies that directly investigate whether whole-brain GM volume differs between rTLE and mTLE. Herein, we used optimized voxel-based morphometry (VBM) to identify GM abnormalities beyond the hippocampus in both rTLE and mTLE with evidence of MTS. Methods:, Brain magnetic resonance imaging (MRI) and optimized VBM were performed in 19 unrelated patients with mTLE, 19 patients with rTLE, and 37 healthy controls. MRI diagnosis of MTS was based on the atrophy of the hippocampal formation and/or mesiotemporal hyperintensity on fluid-attenuated inversion recovery (FLAIR) or T2 images, or both. Results:, No patients (rTLE and mTLE) had generalized tonic,clonic or complex partial seizures for at least 3 weeks before scanning. Both mTLE and rTLE patients showed GM volume reduction of the bilateral thalamus, left hippocampus, and sensorimotor cortex compared with controls. No significant GM difference was found between rTLE and mTLE groups. Discussion:, In both rTLE and mTLE, VBM shows GM reductions not confined to the hippocampus involving mainly the thalamus bilaterally. This finding together with the lack of significant GM differences between the two TLE groups supports the hypothesis that mTLE and rTLE might lie along a biologic continuum, suggesting a pathophysiologic role of the thalamus in partial epilepsy. [source]


Molecular Neuropathology of Temporal Lobe Epilepsy: Complementary Approaches in Animal Models and Human Disease Tissue

EPILEPSIA, Issue 2007
Michael Majores
Summary:, Patients with temporal lobe epilepsies (TLE) frequently develop pharmacoresistance to antiepileptic treatment. In individuals with drug-refractory TLE, neurosurgical removal of the epileptogenic focus provides a therapy option with high potential for seizure control. Biopsy specimens from TLE patients constitute unique tissue resources to gain insights in neuropathological and molecular alterations involved in human TLE. Compared to human tissue specimens in most neurological diseases, where only autopsy material is available, the bioptic tissue samples from pharmacoresistant TLE patients open rather exceptional preconditions for molecular biological, electrophysiological as well as biochemical experimental approaches in human brain tissue, which cannot be carried out in postmortem material. Pathological changes in human TLE tissue are multiple and relate to structural and cellular reorganization of the hippocampal formation, selective neurodegeneration, and acquired changes of expression and distribution of neurotransmitter receptors and ion channels, underlying modified neuronal excitability. Nevertheless, human TLE tissue specimens have some limitations. For obvious reasons, human TLE tissue samples are only available from advanced, drug-resistant stages of the disease. However, in many patients, a transient episode of status epilepticus (SE) or febrile seizures in childhood can induce multiple structural and functional alterations that after a latency period result in a chronic epileptic condition. This latency period, also referred to as epileptogenesis, cannot be studied in human TLE specimens. TLE animal models may be particularly helpful in order to shed characterize new molecular pathomechanisms related to epileptogenesis and open novel therapeutic strategies for TLE. Here, we will discuss experimental approaches to unravel molecular,neuropathological aspects of TLE and highlight characteristics and potential of molecular studies in human and/or experimental TLE. [source]


Neocortical Temporal FDG-PET Hypometabolism Correlates with Temporal Lobe Atrophy in Hippocampal Sclerosis Associated with Microscopic Cortical Dysplasia

EPILEPSIA, Issue 4 2003
Beate Diehl
Summary: ,Purpose: Medically intractable temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), with or without cortical dysplasia (CD), is associated with atrophy of the hippocampal formation and regional fluorodeoxyglucose positron-emission tomography (FDG-PET) hypometabolism. The relation between areas of functional and structural abnormalities is not well understood. We investigate the relation between FDG-PET metabolism and temporal lobe (TL) and hippocampal atrophy in patients with histologically proven isolated HS and HS associated with CD. Methods: Twenty-three patients underwent en bloc resection of the mesial and anterolateral neocortical structures. Ten patients were diagnosed with isolated HS; 13 patients had associated microscopic CD. Temporal lobe volumes (TLVs) and hippocampal volumes were measured. Magnetic resonance imaging (MRI) and PET were co-registered, and regions of interest (ROIs) determined as gray matter of the mesial, lateral, and anterior temporal lobe. Results: All patients (HS with or without CD) had significant ipsilateral PET hypometabolism in all three regions studied (p < 0.0001). In patients with isolated HS, the most prominent hypometabolism was in the anterior and mesial temporal lobe, whereas in dual pathology, it was in the lateral temporal lobe. TLVs and hippocampal volumes were significantly smaller on the epileptogenic side (p < 0.05). The PET asymmetries ipsilateral/contralateral to the epileptogenic zone and TLV asymmetries correlated significantly for the anterior and lateral temporal lobes (p < 0.05) in the HS+CD group, but not in the isolated HS group. Mesial temporal hypometabolism was not significantly different between the two groups. Conclusions: Temporal neocortical microscopic CD with concurrent HS is associated with more prominent lateral temporal metabolic dysfunction compared with isolated HS in TL atrophy. Further studies are needed to confirm these findings and correlate the PET hypometabolic patterns with outcome data in patients operated on for HS with or without CD. [source]


Expression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindled Rats

EPILEPSIA, Issue 7 2002
Ulrike Seegers
Summary: ,Purpose: Based on data from brain biopsy samples of patients with pharmacoresistant partial epilepsy, overexpression of the multidrug transporter P-glycoprotein (PGP) in brain capillary endothelium has recently been proposed as a potential mechanism of resistance to antiepileptic drugs (AEDs). We examined whether PGP is overexpressed in brain regions of amygdala-kindled rats, a widely used model of temporal lobe epilepsy (TLE), which is often resistant to AEDs. Methods: Rats were kindled by stimulation of the basolateral amygdala (BLA); electrode-implanted but nonkindled rats and naive (not implanted) rats served as controls. PGP was determined by immunohistochemistry either 1 or 2 weeks after the last kindled seizure, by using a monoclonal anti-PGP antibody. Six brain regions were examined ipsi- and contralateral to the BLA electrode: the BLA, the hippocampal formation, the piriform cortex, the substantia nigra, the frontal and parietal cortex, and the cerebellum. Results: In both kindled rats and controls, PGP staining was observed mainly in microvessel endothelial cells and, to a much lesser extent, in parenchymal cells. The distribution of PGP expression across brain regions was not homogeneous, but significant differences were found in both the endothelial and parenchymal expression of this protein. In kindled rats, ipsilateral PGP expression tended to be higher than contralateral expression in several brain regions, which was statistically significant in the piriform cortex and parietal cortex. However, compared with controls, no significant overexpression of PGP in capillary endothelial cells or brain parenchyma of kindled rats was seen in any ipsilateral brain region, including the BLA. For comparison with kindled rats, kainate-treated rats were used as positive controls. As reported previously, kainate-induced seizures significantly increased PGP expression in the hippocampus and other limbic brain regions. Conclusions: Amygdala-kindling does not induce any lasting overexpression of PGP in several brain regions previously involved in the kindling process. In view of the many pathophysiologic and pharmacologic similarities between the kindling model and TLE, these data may indicate that PGP overexpression in pharmacoresistant patients with TLE is a result of uncontrolled seizures but not of the processes underlying epilepsy. It remains to be determined whether transient PGP overexpression is present in kindled rats shortly after a seizure, and whether pharmacoresistant subgroups of kindled rats exhibit an increased expression of PGP. Furthermore, other multidrug transporters, such as multidrug resistance,associated protein, might be involved in the resistance of kindled rats to AEDs. [source]


Fenfluramine Blocks Low-Mg2+ -Induced Epileptiform Activity in Rat Entorhinal Cortex

EPILEPSIA, Issue 8 2000
K. Gentsch
Summary: Purpose: The entorhinal cortex (EC) represents the main input structure to the hippocampus and seems to be critically involved in temporal lobe epilepsy. Considering that the EC receives a strong serotonergic projection from the raphe nuclei and expresses a high density of serotonin (5-HT) receptors, the effect of the 5-HT,releasing drug fenfluramine (FFA) on epileptiform activity generated in the EC was investigated in an in vitro model of epilepsy. Methods: The experiments were performed on 43 horizontal slices containing the EC, the subiculum, and the hippocampal formation obtained from 230,250 g adult Wistar rats. Using extracellular recording techniques, we investigated the effect of bath-applied FFA (200 ,mol/L to 1 mmol/L) on epileptiform activity induced by omitting MgSO4 from the artificial cerebrospinal fluid. Results: We demonstrate that FFA reversibly blocks epileptiform activity in the EC. Surprisingly, in the presence of the 5-HT uptake blocker paroxetine, the FFA-induced effect was diminished. Coapplication of the 5-HTIA receptor antagonist WAY 100635 prevented the FFA-induced anticonvulsive effect, suggesting that (a) the FFA-induced suppression of epileptiform activity is mediated by the release of 5-HT from synaptic terminals within the EC rather than by an unspecific effect of FFA and (b) released 5-HT most likely blocks the activity by activation of 5-HTIA receptors. Conclusion: FFA, which is primarily used because of its anorectic activity, might get an additional therapeutic value in the treatment of temporal lobe epilepsy with parahippocampal involvement. [source]


Age-dependent effect of prenatal stress on hippocampal cell proliferation in female rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009
Muriel Koehl
Abstract Stressors occurring during pregnancy can alter the developmental trajectory of offspring and lead to, among other deleterious effects, cognitive deficits and hyperactivity of the hypothalamo-pituitary-adrenal axis. A recent feature of the prenatal stress (PS) model is its reported influence on structural plasticity in hippocampal formation, which sustains both cognitive functions and stress responsiveness. Indeed, we and others have previously reported that males exposed to stress in utero are characterized by a decrease in hippocampal cell proliferation, and consequently neurogenesis, from adolescence to senescence. Recent studies in females submitted to PS have reported conflicting results, ranging from no effect to a decrease in cell proliferation. We hypothesized that changes in cell proliferation in PS female rats are age dependent. To address this issue, we examined the impact of PS on hippocampal cell proliferation in juvenile, young, middle-aged and old females. As hypothesized, we found an age-dependent effect of PS in female rats as cell proliferation was significantly decreased only when animals reached senescence, a time when adrenal gland weight also increased. These data suggest that the deleterious effects of PS on hippocampal cell proliferation in females are either specific to senescence or masked during adulthood by protective factors. [source]


Learning-associated regulation of polysialylated neural cell adhesion molecule expression in the rat prefrontal cortex is region-, cell type- and paradigm-specific

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2008
Judith P. F. Ter Horst
Abstract The prefrontal cortex (PFC) is an interconnected set of cortical areas that function in the synthesis of a diverse range of information and production of complex behaviour. It is now clear that these frontal structures, through bidirectional excitatory communication with the hippocampal formation, also play a substantial role in long-term memory consolidation. In the hippocampus, morphological synaptic plasticity, supported by regulation of neural cell adhesion molecule (NCAM) polysialylation status, is crucial to information storage. The recent description of polysialylated neurons in the various fields of the medial PFC suggests these structures to possess a similar capacity for synaptic plasticity. Here, using double-labelling immunohistochemistry with glutamic acid decarboxylase 67, we report that the nature of NCAM polysialic acid-positive neurons in the PFC is region-specific, with a high proportion (30,50%) of a ,-aminobutyric acid (GABA)ergic phenotype in the more ventral infralimbic, orbitofrontal and insular cortices compared with just 10% in the dorsal structures of the cingulate, prelimbic and frontal cortices. Moreover, spatial learning was accompanied by activations in polysialylation expression in ventral PFC structures, while avoidance conditioning involved downregulation of this plasticity marker that was restricted to the dorsomedial PFC , the cingulate and prelimbic cortices. Thus, in contrast to other structures integrated functionally with the hippocampus, memory-associated plasticity mobilized in the PFC is region-, cell type- and task-specific. [source]


Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Yasuhisa Tamura
Abstract In the adult mammalian brain, multipotent stem or progenitor cells involved in reproduction of neurons and glial cells have been well investigated only in very restricted regions; the subventricular zone of the lateral ventricle and the dentate gyrus in the hippocampal formation. In the neocortex, a series of in vitro studies has suggested the possible existence of neural progenitor cells possessing neurogenic and/or gliogenic potential in adult mammals. However, the cellular properties of the cortical progenitor cells in vivo have not been fully elucidated. Using 5,-bromodeoxyuridine labeling and immunohistochemical analysis of cell differentiation markers, we found that a subpopulation of NG2-immunopositive cells co-expressing doublecortin (DCX), an immature neuron marker, ubiquitously reside in the adult rat neocortex. Furthermore, these cells are the major population of proliferating cells in the region. The DCX(+)/NG2(+) cells reproduced the same daughter cells, or differentiated into DCX(+)/NG2(,) (approximately 1%) or DCX(,)/NG2(+) (approximately 10%) cells within 2 weeks after cell division. The DCX(+)/NG2(,) cells were also immunopositive for TUC-4, a neuronal linage marker, suggesting that these cells were committed to neuronal cell differentiation, whereas the DCX(,)/NG2(+) cells showed faint immunoreactivity for glutathione S-transferase (GST)-pi, an oligodendrocyte lineage marker, in the cytoplasm, suggesting glial cell lineage, and thereafter the cells differentiated into NG2(,)/GST-pi(+) mature oligodendrocytes after a further 2 weeks. These findings indicate that DCX(+)/NG2(+) cells ubiquitously exist as ,multipotent progenitor cells' in the neocortex of adult rats. [source]


Somatodendritic localization of EFA6A, a guanine nucleotide exchange factor for ADP-ribosylation factor 6, and its possible interaction with ,-actinin in dendritic spines

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2007
Hiroyuki Sakagami
Abstract EFA6A is a member of the guanine nucleotide exchange factors that can specifically activate ADP ribosylation factor 6 (ARF6). In this study, we identified ,-actinin-1 as a possible interacting protein with EFA6A by the yeast two-hybrid screening with its C-terminal region as bait. The central region of ,-actinin-1 containing a part of spectrin repeat 1 and spectrin repeats 2,3 is responsible for this interaction. In the hippocampal formation, EFA6A immunoreactivity occurred at a high level as numerous fine puncta in the strata oriens, radiatum, lacunosum-moleculare of the hippocampal CA1,3 subfields and the dentate molecular layer, whereas the immunoreactivity was faint in the neuronal cell layers and the stratum lucidum, the mossy fiber-recipient layer of the CA3 subfield. Double-immunofluorescent analyses revealed a partial overlapping of EFA6A and ,-actinin at the dendritic spines of in vivo and cultured hippocampal neurons. Our present findings suggest that EFA6A may form a protein complex with ,-actinin and activate ARF6 in close proximity of the actin cytoskeleton and membrane proteins in the dendritic spines. [source]


Enhanced synaptic excitation,inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2007
F. Stief
Abstract A common feature of all epileptic syndromes is the repetitive occurrence of pathological patterns of synchronous neuronal activity, usually combined with increased neuronal discharge rates. Inhibitory interneurons of the hippocampal formation control both neuronal synchronization as well as the global level of activity and are therefore of crucial importance for epilepsy. Recent evidence suggests that changes in synaptic inhibition during temporal lobe epilepsy are rather specific, resulting from selective death or alteration of interneurons in specific hippocampal layers. Hence, epilepsy-induced changes have to be analysed separately for different types of interneurons. Here, we focused on GABAergic neurons located at the border between stratum radiatum and stratum lacunosum-moleculare of hippocampal area CA1 (SRL interneurons), which are included in feedforward inhibitory circuits. In chronically epileptic rats at 6,8 months after pilocarpine-induced status epilepticus, frequencies of spontaneous and miniature inhibitory postsynaptic currents were reduced, yielding an almost three-fold increase in excitation,inhibition ratio. Consistently, action potential frequency of SRL interneurons was about two-fold enhanced. Morphological alterations of the interneurons indicate that these functional changes were accompanied by remodelling of the local network, probably resulting in a loss of functional inhibitory synapses without conceivable cell death. Our data indicate a strong increase in activity of interneurons in dendritic layers of the chronically epileptic CA1 region. This alteration may enhance feedforward inhibition and rhythmogenesis and , together with specific changes in other interneurons , contribute to seizure susceptibility and pathological synchronization. [source]


The role of the medial temporal lobe in autistic spectrum disorders

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005
C. H. Salmond
Abstract The neural basis of autistic spectrum disorders (ASDs) is poorly understood. Studies of mnemonic function in ASD suggest a profile of impaired episodic memory with relative preservation of semantic memory (at least in high-functioning individuals). Such a pattern is consistent with developmental hippocampal abnormality. However, imaging evidence for abnormality of the hippocampal formation in ASD is inconsistent. These inconsistencies led us to examine the memory profile of children with ASD and the relationship to structural abnormalities. A cohort of high-functioning individuals with ASD and matched controls completed a comprehensive neuropsychological memory battery and underwent magnetic resonance imaging for the purpose of voxel-based morphometric analyses. Correlations between cognitive/behavioural test scores and quantified results of brain scans were also carried out to further examine the role of the medial temporal lobe in ASD. A selective deficit in episodic memory with relative preservation of semantic memory was found. Voxel-based morphometry revealed bilateral abnormalities in several areas implicated in ASD including the hippocampal formation. A significant correlation was found between parental ratings reflecting autistic symptomatology and the measure of grey matter density in the junction area involving the amygdala, hippocampus and entorhinal cortex. The data reveal a pattern of impaired and relatively preserved mnemonic function that is consistent with a hippocampal abnormality of developmental origin. The structural imaging data highlight abnormalities in several brain regions previously implicated in ASD, including the medial temporal lobes. [source]


Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal,entorhinal system

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
Fabian Kloosterman
Abstract The hippocampal formation communicates with the neocortex mainly through the adjacent entorhinal cortex. Neurons projecting to the hippocampal formation are found in the superficial layers of the entorhinal cortex and are largely segregated from the neurons receiving hippocampal output, which are located in deep entorhinal layers. We studied the communication between deep and superficial entorhinal layers in the anaesthetized rat using field potential recordings, current source density analysis and single unit measurements. We found that subiculum stimulation was able to excite entorhinal neurons in deep layers. This response was followed by current sinks in superficial layers. Both responses were subject to frequency dependent facilitation, but not depression. Selective blockade of deep layer responses also abolished subsequent superficial layer responses. This clearly demonstrates a functional deep-to-superficial layer communication in the entorhinal cortex, which can be triggered by hippocampal output. This pathway may provide a means by which processed hippocampal output is integrated or compared with new incoming information in superficial entorhinal layers, and it constitutes an important link in the process of re-entrance of activity in the hippocampal,entorhinal network, which may be important for consolidation of memories or retaining information for short periods. [source]


Morphological alterations in the amygdala and hippocampus of mice during ageing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Oliver Von Bohlen und Halbach
Abstract Declines in memory function and behavioural dysfunction accompany normal ageing in mammals. However, the cellular and morphological basis of this decline remains largely unknown. It was assumed for a long time that cell losses in the hippocampus accompany ageing. However, recent stereological studies have questioned this finding. In addition, the effect of ageing is largely unknown in another key structure of the memory system, the amygdala. In the present study, we have estimated neuronal density and total neuronal numbers as well as density of fragments of degenerated axons in different hippocampal subfields and amygdaloid nuclei. Comparisons were made among aged (21,26 months old) mice and normal adult littermates (8 months old). No significant volume loss occurs in the hippocampus of aged mice. Small but insignificant reductions in total neuronal numbers were found in the hippocampus and in the amygdaloid nuclei. In contrast to the mild effects of ageing upon neuronal numbers, fragments of degenerated axons were increased in both hippocampus and amygdala of aged mice. These data suggest that ageing does not induce prominent cell loss in the hippocampus or amygdala, but leads to degeneration of axons that innervate these forebrain structures. Thus, mechanisms underlying age-related dysfunction depend on parameters other than neuronal numbers, at least in the hippocampal formation and the amygdala. [source]


Comparative distribution of the mammalian mediator subunit thyroid hormone receptor-associated protein (TRAP220) mRNA in developing and adult rodent brain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002
Anastasia Galeeva
Abstract TRAP220 (thyroid hormone receptor-associated protein) is a recently cloned nuclear receptor coactivator, which interacts with several nuclear receptors in a ligand-dependent manner and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. TRAP220 has been shown to interact with thyroid hormone receptors, vitamin D receptors, peroxisome proliferator-activated receptors, retinoic acid receptors and oestrogen receptors. Thyroid hormone and retinoic acid play very important roles in brain development and they also influence adult brain. Using in situ hybridization we have examined expression of TRAP220 mRNA in the central nervous system during development and in adult rat and mouse brain. Expression of TRAP220 was seen already during early embryonic development in the epithelium of neural tube at E9 in mouse and at E12 in rat. At later stages of development the strongest signal was seen in different layers of cerebral neocortex, external germinal layer of cerebellum, differentiating fields of hippocampus and neuroepithelium, and a moderate signal was detected in basal ganglia, different areas of diencephalon and midbrain. In adult rat brain the signal was more restricted than during development. TRAP220 expression occurred mostly in the granular layer of cerebellar cortex, piriform cortex and hippocampal formation. The signal was found predominantly in neurons. Our work supports the assumption that TRAP220 plays an important role in growth and differentiation of central nervous system and may have a function in certain areas of adult brain. [source]


Postnatal handling alters the activation of stress-related neuronal circuitries

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2000
István M. Ábrahám
Abstract Postnatal handling, as a crucial early life experience, plays an essential role in the development of hypothalamo-pituitary,adrenal axis responses to stress. The impact of postnatal handling on the reactivity of stress-related neuronal circuitries was investigated in animals that were handled for the first 21 days of life and as adults they were exposed to physical (ether) or emotional (restraint) challenge. To assess neuronal activation we relied on the induction of immediate-early gene product c-Fos and analysed its spatial and temporal distribution at various time intervals after stress. Ether and restraint commonly activated parvocellular neurons in the hypothalamic paraventricular nucleus, and resulted in activation of brain areas providing stress-related information to the hypothalamic effector neurons and/or in regions governing autonomic and behavioural responses to stress. Beyond these areas, the strength and timing of c-Fos induction showed stressor specificity in olfactory and septal region, basal ganglia, hypothalamus, hippocampal formation, amygdala and brainstem. Handled rats displayed a lower number of c-Fos-positive cell nuclei and weaker staining intensity than non-handled controls in the hypothalamic paraventricular nucleus, bed nucleus of stria terminalis, central nucleus of amygdala, hippocampus, piriform cortex and posterior division of the cingulum. Significant differences were revealed in timing of c-Fos induction as a function of stressor and early life experience. Together, these data provide functional anatomical evidence that environmental enrichment in the early postnatal period attenuates the reactivity of stress-related neuronal circuitries in the adult rat brain. [source]


Dose-dependent long-term effects of Tat in the rat hippocampal formation: A design-based stereological study

HIPPOCAMPUS, Issue 4 2010
Sylvia Fitting
Abstract The human immunodeficiency virus type 1 (HIV-1) protein transactivator of transcription (Tat) is believed to play a critical role in mediating central nervous system (CNS) pathology in pediatric HIV-1 infection. Long-term neurotoxicity was investigated in a design-based stereology study following intrahippocampal injection of Tat on postnatal day (P)10, a time period that approximates the peak in the rats' rate of brain growth and mimics clinical HIV-1 CNS infection at labor/delivery. The goal was to examine the impact of P10 intrahippocampal Tat injection on the anatomy of the adult hippocampus (5 month) to gain a better understanding about how timing of infection influences the rate of progression of pediatric HIV-1 infection [cf. Fitting et al. (2008a) Hippocampus 18:135,147]. Male P10 Sprague-Dawley rats were bilaterally injected with vehicle or one of three different doses of Tat (5, 25, or 50 ,g). Unbiased stereological estimates were used to quantify total neuron number (Nissl stain) in five major subregions of the rat hippocampus: granular layer (GL), hilus of the dentate gyrus (DGH), cornu ammonis fields (CA)2/3, CA1, and subiculum (SUB). Glial cells (astrocytes and oligodendrocytes) were quantified in the DGH and SUB. No significant reduction of neuron number was noted for any of the five hippocampal subregions, in contrast to the very prominent reductions reported when Tat was administered on P1 [Fitting et al. (2008a) Hippocampus 18:135,147]. However, for glial cells, the number of astrocytes in the DGH and SUB as well as the number of oligodendrocytes in the DGH were linear dose dependently increased as a function of dose of Tat. In conjunction with previous stereological research [Fitting et al., (2008a) Hippocampus 18:135,147], the present data suggest that variability in the progression of pediatric HIV/acquired immunodeficiency syndrome (AIDS) may be better understood with the knowledge of the factor of timing of HIV-1 CNS infection. © 2009 Wiley-Liss, Inc. [source]


Rat hippocampal theta rhythm during sensory mismatch

HIPPOCAMPUS, Issue 4 2009
D. Zou
Abstract It has been suggested that sensory mismatch induces motion sickness, but its neural mechanisms remain unclear. To investigate this issue, theta waves in the hippocampal formation (HF) were studied during sensory mismatch by backward translocation in awake rats. A monopolar electrode was implanted into the dentate gyrus in the HF, from which local field potentials were recorded. The rats were placed on a treadmill affixed to a motion stage translocated along a figure 8-shaped track. The rats were trained to run forward on the treadmill at the same speed as that of forward translocation of the motion stage (a forward condition) before the experimental (recording) sessions. In the experimental sessions, the rats were initially tested in the forward condition, and then tested in a backward (mismatch) condition, in which the motion stage was turned around by 180° before translocation. That is, the rats were moved backward by translocation of the stage although the rats ran forward on the treadmill. The theta (6,9 Hz) power was significantly increased in the backward condition compared with the forward condition. However, the theta power gradually decreased by repeated testing in the backward condition. Furthermore, backward translocation of the stage without locomotion did not increase theta power. These results suggest that the HF might function as a comparator to detect sensory mismatch, and that alteration in HF theta activity might induce motion sickness. © 2008 Wiley-Liss, Inc. [source]


Subicular and CA1 hippocampal projections to the accessory olfactory bulb

HIPPOCAMPUS, Issue 2 2009
C. de la Rosa-Prieto
Abstract The hippocampal formation is anatomically and functionally related to the olfactory structures especially in rodents. The entorhinal cortex (EC) receives afferent projections from the main olfactory bulb; this constitutes an olfactory pathway to the hippocampus. In addition to the olfactory system, most mammals possess an accessory olfactory (or vomeronasal) system. The relationships between the hippocampal formation and the vomeronasal system are virtually unexplored. Recently, a centrifugal projection from CA1 to the accessory olfactory bulb has been identified using anterograde tracers. In the study reported herein, experiments using anterograde tracers confirm this projection, and injections of retrograde tracers show the distribution and morphology of a population of CA1 and ventral subicular neurons projecting to the accessory olfactory bulb of rats. These results extend previous descriptions of hippocampal projections to the accessory olfactory bulb by including the ventral subiculum and characterizing the morphology, neurochemistry (double labeling with somatostatin), and distribution of such neurons. These data suggest feedback hippocampal control of chemosensory stimuli in the accessory olfactory bulb. Whether this projection processes spatial information on conspecifics or is involved in learning and memory processes associated with chemical stimuli remains to be elucidated. © 2008 Wiley-Liss, Inc. [source]


Lesions of the mammillary body region alter hippocampal movement signals and theta frequency: Implications for path integration models

HIPPOCAMPUS, Issue 9 2008
Patricia E. Sharp
Abstract Cells throughout the hippocampal formation are involved in processing spatial information. These same cells also show an influence of locomotor activity, and these movement signals are thought to be critical for the path integration abilities of these cells. Nuclei in the mammillary region provide ascending influences to the hippocampal formation and have been implicated in influencing both hippocampal spatial and theta signals. Here, we report the effects of mammillary lesions on movement-related signals in several hippocampal subregions. We find first, as predicted by earlier work, these lesions cause an approximately 1 Hz reduction in the frequency of theta modulation of cell firing. According to recent theoretical work, this might, in turn, be expected to influence the size of hippocampal place fields. Our data do not confirm this prediction for any of the hippocampal regions examined. Second, we report lesion effects on the relationship between firing rate and running speed for the hippocampal cells. These lesions caused a reduction in both the slope and intercept of rate-by-speed functions for cells in the hippocampus and postsubiculum. Surprisingly, cells in subiculum showed an opposite effect, so that the excitatory influence of locomotion was enhanced. Path integration theories predict that the speed at which path integration occurs is related to the strength of this movement signal. In remarkable accordance with this prediction, we report that the timing of the place cell signals is slowed following mammillary lesions for hippocampal and postsubicular cells, but, in contrast, is speeded up for subicular cells. In fact, the timing for place signals across lesion condition and brain region is predicted by a single linear function which relates timing to the strength of the running speed signal. Thus, these data provide remarkable support for some aspects of current path integration theory, while posing a challenge for other aspects of these same theories. © 2008 Wiley-Liss, Inc. [source]


Differential long-term neurotoxicity of HIV-1 proteins in the rat hippocampal formation: A design-based stereological study

HIPPOCAMPUS, Issue 2 2008
Sylvia Fitting
Abstract The human immunodeficiency virus type 1 (HIV-1) proteins, gp120 and Tat, are believed to play a role in mediating central nervous system (CNS) pathology in HIV-1 infected patients. Using design-based stereology, we examined the role of neonatal intrahippocampal injections of gp120 and Tat on the adult hippocampus (,7˝ month). Postnatal day (P)1-treated Sprague-Dawley rats were bilaterally injected with vehicle (VEH, 0.5 ,l sterile buffer), gp120 (100 ng), Tat (25 ,g) or combined gp120 + Tat (100 ng + 25 ,g). Using Nissl-stained tissue sections, we quantified total neurons in five subregions of the rat hippocampus [granual layer (GL), hilus of the dentate gyrus (DGH), cornu ammonis fields (CA)2/3, CA1, and subiculum (SUB)], and total glial cells (astrocytes and oligodendrocytes) in two subregions (DGH and SUB). Estimates of cell area and cell volume were taken in the DGH. There was a significant reduction of neuron number in the CA2/3 subfield by Tat and gp120, and a significant reduction in the DGH by Tat only. For glial cells, numbers of astrocytes in the DGH and SUB were increased by the Tat protein, whereas no effects were noted for gp120. Finally, for oligodendrocytes Tat increased cell number in the DGH but not in any other region; gp120 had no detectable effect in any brain region. Estimates of cell area and cell volume of the three different cell types revealed no significant differences between treatments. Collectively, these results suggest differential effects of gp120 and Tat on the estimated total number of neurons, as well as on the number of glial cells. © 2007 Wiley-Liss, Inc. [source]


The subiculum comes of age

HIPPOCAMPUS, Issue 11 2006
Liset Menendez de la Prida
Abstract The subiculum has long been considered as a simple bidirectional relay region interposed between the hippocampus and the temporal cortex. Recent evidence, however, suggests that this region has specific roles in the cognitive functions and pathological deficits of the hippocampal formation. A group of 20 researchers participated in an ESF-sponsored meeting in Oxford in September, 2005 focusing on the neurobiology of the subiculum. Each brought a distinct expertise and approach to the anatomy, physiology, psychology, and pathologies of the subiculum. Here, we review the recent findings that were presented at the meeting. © 2006 Wiley-Liss, Inc. [source]


Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age,

HIPPOCAMPUS, Issue 8 2006
Sharon L. Eastwood
Abstract In the human neocortex, progressive synaptogenesis in early postnatal life is followed by a decline in synaptic density, then stability from adolescence until middle age. No comparable data are available in the hippocampus. In this study, the integral synaptic vesicle protein synaptophysin, measured immunoautoradiographically, was used as an index of synaptic terminal abundance in the hippocampal formation of 37 subjects from 5 weeks to 86 yr old, divided into 4 age groups (10 infants, 15 adolescents/young adults, 6 adults, and 6 elderly). In all hippocampal subfields, synaptophysin was lowest in infancy, but did not differ significantly between the older age groups, except in dentate gyrus (DG) where the rise was delayed until adulthood. A similar developmental profile was found in the rat hippocampus. We also measured synaptophysin mRNA in the human subjects and found no age-related changes, except in parahippocampal gyrus wherein the mRNA declined from infancy to adolescence, and again in old age. The synaptophysin protein data demonstrate a significant presynaptic component to human postnatal hippocampal development. In so far as synaptophysin abundance reflects synaptic density, the findings support an increase in hippocampal and parahippocampal synapse formation during early childhood, but provide no evidence for adolescent synaptic pruning. The mRNA data indicate that the maturational increases in synaptophysin protein are either translational rather than transcriptional in origin, or else are secondary to mRNA increases in neurons, the cell bodies of which lie outside the hippocampal formation. Published 2006 Wiley-Liss, Inc. [source]


Lateralized functional components of spatial cognition in the avian hippocampal formation: Evidence from single-unit recordings in freely moving homing pigeons

HIPPOCAMPUS, Issue 2 2006
Jennifer J. Siegel
Abstract Previous research has revealed that the functional components of spatial cognition are lateralized in the forebrain of birds, including the hippocampal formation (HF). To investigate how HF cells in the left and right avian brain may differentially participate in representations of space, we recorded single-units from the HF of homing pigeons as they ran a plus maze for food. The rate maps of left HF cells often displayed elongated regions of increased activity in the center of the maze and along the maze corridors, whereas right HF cells tended to display patches at the ends of maze arms at/near goal locations. Left HF cells displayed a higher degree of spatial-specificity compared with right HF cells, including higher patch-specificity, higher reliability, and a higher incidence of location-correlated activity. Analysis of speed-correlated and trajectory-dependent activity also revealed significant HF-lateralized differences. Right HF cells tended to display significant negative correlations between spike rate and speed, although speed-dependent rate maps indicate that this relationship did not explain their space-specific activity. Left HF cells displayed a significantly higher incidence of trajectory-dependent space-specific activity than was observed in the right HF, suggesting that left HF cells may participate in navigating among goal locations. Differences in the correlates of left and right pigeon HF cells are consistent with unilateral HF-lesion data suggesting that the functional components of spatial cognition are lateralized in the avian brain, and furthermore, provide a basis for hypotheses regarding how the left and right HF support different aspects of spatial cognition. © 2005 Wiley-Liss, Inc. [source]


Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the anesthetized rat

HIPPOCAMPUS, Issue 1 2006
Jesse Jackson
Abstract Independent and combined electrical stimulation pairings of the medial septum (MS), posterior hypothalamus (PH), and reticular pontine oralis (RPO) of the brainstem were performed in the acute urethane anesthetized rat, while recording field activity from electrodes in either the stratum oriens or stratum moleculare of the hippocampal formation. Theta frequency and power were measured during independent stimulation of each nuclei and during combined stimulation using three pairings: (1) MS,PH (2) MS,RPO and (3) PH,RPO. Each pairing consisted of parameters known to elicit theta of a high frequency for one nucleus, and parameters known to elicit a low frequency for the second nucleus. This methodology allowed us to observe whether one nucleus preferentially modulated theta activity in the hippocampus in terms of frequency and power. The MS was observed to reset theta frequency in both the upward and downward direction when stimulated in combination with either the PH (Experiment 1) or the RPO (Experiment 2). In Experiment 3 (PH,RPO), the structure receiving the higher intensity stimulation had the predominate effect on theta frequency. With MS stimulation combinations, the power of the elicited theta activity was found to increase over the independent stimulation in some cases during Experiment 1. Likewise, in Experiment 2, the combined stimulation produced a power that in most cases was significantly greater than that measured during the independent stimulations. This effect was not observed with PH and RPO stimulation combinations. The combined stimulation of the PH and RPO yielded a power similar to the independent PH stimulations. The findings support the following conclusions: (1) the major theta generating activity of the ascending brainstem synchronizing pathways involves projections from the RPO to the PH, relayed through the MS, to the hippocampal formation; and (2) that the MS directly controls theta amplitude and secondarily translates the level of ascending brainstem activity into the appropriate frequency of hippocampal theta. © 2005 Wiley-Liss, Inc. [source]


Functional connectivity with the hippocampus during successful memory formation

HIPPOCAMPUS, Issue 8 2005
Charan Ranganath
Abstract Although it is well established that the hippocampus is critical for episodic memory, little is known about how the hippocampus interacts with cortical regions during successful memory formation. Here, we used event-related functional magnetic resonance imaging (fMRI) to identify areas that exhibited differential functional connectivity with the hippocampus during processing of novel objects that were subsequently remembered or forgotten on a postscan test. Functional connectivity with the hippocampus was enhanced during successful, as compared with unsuccessful, memory formation, in a distributed network of limbic cortical areas,including perirhinal, orbitofrontal, and retrosplenial/posterior cingulate cortex,that are anatomically connected with the hippocampal formation. Increased connectivity was also observed in lateral temporal, medial parietal, and medial occipital cortex. These findings demonstrate that successful memory formation is associated with transient increases in cortico-hippocampal interaction. © 2005 Wiley-Liss, Inc. [source]


Excitotoxic lesions of the pre- and parasubiculum disrupt the place fields of hippocampal pyramidal cells

HIPPOCAMPUS, Issue 1 2004
Ping Liu
Abstract To determine what influence the pre- and parasubiculum regions of the hippocampal formation have on neural representations within the dorsal hippocampus, single-unit recordings were made as rats with bilateral ibotenic acid lesions centered on the former regions (n = 4) or control surgeries (n = 3) foraged freely. Spatial firing specificity was measured using an information content procedure. Cells from lesioned animals (n = 57) provided significantly less spatial information than cells from control animals (n = 44). Whereas some degree of location-related activity (place fields) was observed in 98% of neurons recorded from control animals, it was observed in only 65% of the neurons from lesioned animals. The spatial resolution of the intact place fields appeared to be compromised in lesioned animals as a result of their having a higher firing rate outside the place field. These findings indicate that the pre- and parasubiculum regions have a major role in maintaining the specificity of the place field firing of hippocampal pyramidal cells. Since previous data indicate that these lesioned animals displayed delay-dependent deficits in spatial tasks, these findings also suggest that a disruption in place field activity may be a causal factor in this spatial memory deficit. © 2003 Wiley-Liss, Inc. [source]