Hippocampal Areas (hippocampal + area)

Distribution by Scientific Domains

Terms modified by Hippocampal Areas

  • hippocampal area ca1

  • Selected Abstracts


    Oxidative stress and hippocampus in a low-grade hepatic encephalopathy model: protective effects of curcumin

    HEPATOLOGY RESEARCH, Issue 11 2008
    Diego Martín Roselló
    Aim:, The present study was performed on prehepatic portal hypertensive rats, a model of low-grade hepatic encephalopathy, designed to evaluate whether oxidative stress was a possible pathway implicated in hippocampal damage and if so, the effect of an anti-oxidant to prevent it. Methods:, Prehepatic portal hypertension was induced by a regulated portal vein stricture. Oxidative stress was investigated by assessing related biochemical parameters in rat hippocampus. The effect of the anti-oxidant curcumin, administered in a single i.p. dose of 100 mg/kg on the seventh, ninth and eleventh days after surgery, was evaluated. Results:, Oxidative stress in the rat hippocampal area was documented. Curcumin significantly decreased tissue malondialdehyde levels and significantly increased glutathione peroxidase, catalase and superoxide dismutase activities in the hippocampal tissue of portal hypertensive rats. Conclusion:, Oxidative stress was found to be implicated in the hippocampal damage and curcumin protected against this oxidative stress in low-grade hepatic encephalopathic rats. These protective effects may be attributed to its anti-oxidant properties. [source]


    Contrasting roles of neural firing rate and local field potentials in human memory

    HIPPOCAMPUS, Issue 8 2007
    Arne Ekstrom
    Abstract Recording the activity of neurons is a mainstay of animal memory research, while human recordings are generally limited to the activity of large ensembles of cells. The relationship between ensemble activity and neural firing rate during declarative memory processes, however, remains unclear. We recorded neurons and local field potentials (LFPs) simultaneously from the same sites in the human hippocampus and entorhinal cortex (ERC) in patients with implanted intracranial electrodes during a virtual taxi-driver task that also included a memory retrieval component. Neurons increased their firing rate in response to specific passengers or landmarks both during navigation and retrieval. Although we did not find item specificity in the broadband LFP, both ,- and ,-band LFPs increased power to specific items on a small but significant percent of channels. These responses, however, did not correlate with item-specific neural responses. To contrast item-specific responses with process-specific responses during memory, we compared neural and LFP responses during encoding (navigation) and retrieval (associative and item-specific recognition). A subset of neurons also altered firing rates nonspecifically while subjects viewed items during encoding. Interestingly, LFPs in the hippocampus and ERC increased in power nonspecifically while subjects viewed items during retrieval, more often during associative than item-recognition. Furthermore, we found no correlation between neural firing rate and broadband, ,-band, and ,-band LFPs during process-specific responses. Our findings suggest that neuronal firing and ensemble activity can be dissociated during encoding, item-maintenance, and retrieval in the human hippocampal area, likely relating to functional properties unique to this region. © 2007 Wiley-Liss, Inc. [source]


    The neuronal apoptotic death in global cerebral ischemia in gerbil: Important role for sodium channel modulator,

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2009
    Manoja Kumar Brahma
    Abstract Global ischemia was induced in gerbil by bilateral occlusion of the common carotid arteries for 5 min. Sodium ionophore monensin or sodium channel blocker tetrodotoxin (TTX) was administered at doses of 10 ,g/kg, i.p., 30 min before ischemia induction; the dose was repeated after 22 hr. Subsequently, brain infarct occurred, determined at 24 hr after occlusion. Large, well-demarcated infarcts were observed in both hemispheres, an important observation because it critically influences the interpretation of the data. Because nitric oxide (NO) production is thought to be related to ischemic neuronal damage, we examined increases in Ca2+ influx, which lead to the activation of nitric oxide synthase (NOS). Then we evaluated the contributions of neuronal NOS, endothelial NOS, and inducible NOS to NO production in brain cryosections. The cytosolic release of apoptogenic molecules like cytochrome c and p53 were confirmed after 24 hr of reflow. TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) labeling detected the apoptotic cells, which were confirmed in neuron-rich cell populations. After 24 hr, all the ischemic changes were amplified by monensin and significantly attenuated by TTX treatment. Additionally, the nesting behavior and histological outcomes were examined after 7 day of reflow. The neuronal damage in the hippocampal area and significant decrease in nesting scores were observed with monensin treatment and reduced by TTX pretreatment after day 7 of reflow. To our knowledge, this report is the first to highlight the involvement of the voltage-sensitive Na+ channel in possibly regulating in part NO system and apoptosis in a cytochrome c,dependent manner in global ischemia in the gerbil, and thus warrants further investigation. © 2008 Wiley-Liss, Inc. [source]


    Limbic Encephalitis Investigated by 18FDG-PET and 3D MRI

    JOURNAL OF NEUROIMAGING, Issue 1 2001
    Jan Kassubek MD
    ABSTRACT Two patients with clinically probable or possible limbic encephalitis (LE) are reported, both cases with typical findings in clinical symptoms (severe neuropsychological deficits and complex partial seizures) and in routine magnetic resonance imaging (MRI) (hyperintense mesiotemporal lesions). Underlying malignancy was identified (rectal carcinoma) in one case but could not be detected in the other patient. The 2 patients were investigated by cerebral 18F-fluoro-2-deoxy-D-glucose,positron emission tomography (FDG-PET) and 3-dimensional (3D) MRI, and abnormalities in metabolic activity were mapped using coregistration of spatially normalized PET and MRI. Highly significant focal hypermetabolism in bilateral hippocampal areas was found in both cases. The authors' findings support FDG-PET coregistered to 3D MRI as a potentially valuable additional tool in the imaging diagnostics of LE. Results are discussed with respect to the clinical symptoms and previously reported imaging findings in the disease. [source]


    Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer's disease

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005
    Akihito Ishigami
    Abstract Citrullinated proteins are the products of a posttranslational process in which arginine residues undergo modification into citrulline residues when catalyzed by peptidylarginine deiminases (PADs) in a calcium ion-dependent manner. In our previous report, PAD2 expressed mainly in the rat cerebrum became activated early in the neurodegenerative process. To elucidate the involvement of protein citrullination in human neuronal degeneration, we examined whether citrullinated proteins are produced during Alzheimer's disease (AD). By Western blot analysis with antimodified citrulline antibody, citrullinated proteins of varied molecular weights were detected in hippocampal tissues from patients with AD but not normal humans. Two of the citrullinated proteins were identified as vimentin and glial fibrillary acidic protein (GFAP) by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Interestingly, PAD2 was detected in hippocampal extracts from AD and normal brains, but the amount of PAD2 in the AD tissue was markedly greater. Histochemical analysis revealed citrullinated proteins throughout the hippocampus, especially in the dentate gyrus and stratum radiatum of CA1 and CA2 areas. However, no citrullinated proteins were detected in the normal hippocampus. PAD2 immunoreactivity was also ubiquitous throughout both the AD and the normal hippocampal areas. PAD2 enrichment coincided well with citrullinated protein positivity. Double immunofluorescence staining revealed that citrullinated protein- and PAD2-positive cells also coincided with GFAP-positive cells, but not all GFAP-positive cells were positive for PAD2. As with GFAP, which is an astrocyte-specific marker protein, PAD2 is distributed mainly in astrocytes. These collective results, the abnormal accumulation of citrullinated proteins and abnormal activation of PAD2 in hippocampi of patients with AD, strongly suggest that PAD has an important role in the onset and progression of AD and that citrullinated proteins may become a useful marker for human neurodegenerative diseases. © 2005 Wiley-Liss, Inc. [source]


    Gene Expression in the Neuropeptide Y System During Ethanol Withdrawal Kindling in Rats

    ALCOHOLISM, Issue 3 2010
    Janne D. Olling
    Background:, Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. Methods:, Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW,) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). Results:, MW+/, as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW, group compared with the SW group. In the MW+/, and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/, groups compared with the SW group. The MW+ group differed from the MW, group in the PirCx, where Y2 gene expression was significantly higher. Conclusion:, Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process. [source]


    The role of neuroimaging in mild cognitive impairment

    NEUROPATHOLOGY, Issue 6 2007
    Hiroshi Matsuda
    The main purposes of neuroimaging in Alzheimer's disease (AD) have been moved from diagnosis of advanced AD to diagnosis of very early AD at a prodromal stage of mild cognitive impairment, prediction of conversion from mild cognitive impairment (MCI) to AD, and differential diagnosis from other diseases causing dementia. Structural MRI studies and functional studies using F-18 fluorodeoxyglucose-positron emission tomography (FDG-PET) and brain perfusion single-photon emission computed tomography (SPECT) are widely used in diagnosis of AD. Outstanding progress in diagnostic accuracy of these neuroimaging modalities has been obtained using statistical analysis on a voxel-by-voxel basis after spatial normalization of individual scans to a standardized brain-volume template instead of visual inspection or a conventional region of interest technique. In a very early stage of AD, this statistical approach revealed gray matter loss in the entorhinal and hippocampal areas and hypometabolism or hypoperfusion in the posterior cingulate cortex and precuneus. These two findings might be related in view of anatomical knowledge that the regions are linked through the circuit of Papez. This statistical approach also offers prediction of conversion from MCI to AD. Presence of hypometabolism or hypoperfusion in parietal association areas and entorhinal atrophy at the MCI stage has been reported to predict rapid conversion to AD. [source]


    Three-dimensional surface maps link local atrophy and fast ripples in human epileptic hippocampus,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Jennifer A. Ogren PhD
    Objectives There is compelling evidence that pathological high-frequency oscillations (HFOs), called fast ripples (FR, 150,500Hz), reflect abnormal synchronous neuronal discharges in areas responsible for seizure genesis in patients with mesial temporal lobe epilepsy (MTLE). It is hypothesized that morphological changes associated with hippocampal atrophy (HA) contribute to the generation of FR, yet there is limited evidence that hippocampal FR-generating sites correspond with local areas of atrophy. Methods Interictal HFOs were recorded from hippocampal microelectrodes in 10 patients with MTLE. Rates of FR and ripple discharge from each microelectrode were evaluated in relation to local measures of HA obtained using 3-dimensional magnetic resonance imaging (MRI) hippocampal modeling. Results Rates of FR discharge were 3 times higher in areas of significant local HA compared with rates in nonatrophic areas. Furthermore, FR occurrence correlated directly with the severity of damage in these local atrophic regions. In contrast, we found no difference in rates of ripple discharge between local atrophic and nonatrophic areas. Interpretation The proximity between local HA and microelectrode-recorded FR suggests that morphological changes such as neuron loss and synaptic reorganization may contribute to the generation of FR. Pathological HFOs, such as FR, may provide a reliable surrogate marker of abnormal neuronal excitability in hippocampal areas responsible for the generation of spontaneous seizures in patients with MTLE. Based on these data, it is possible that MRI-based measures of local HA could identify FR-generating regions, and thus provide a noninvasive means to localize epileptogenic regions in hippocampus. Ann Neurol 2009;66:783,791 [source]


    Neurotoxic Effects of Three Fractions Isolated from Tityus serrulatus Scorpion Venom

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2000
    Ana Leonor A. Nencioni
    Scorpion venoms contain low molecular weight basic polypeptides, neurotoxins, that are the principal toxic agents. These toxins act on ion channels, promoting a derangement that may result in an abnormal release of neurotransmitters. In the present study we investigated some of the effects of the F, H and J fractions isolated from Tityus serrulatus scorpion venom on the central nervous system of rodents. The venom was partially purified by gel filtration chromatography. The neurotoxic effect of these fractions was studied on convulsive activity after intravenous injection, and on electrographic activity and neuronal integrity of rat hippocampus when injected directly into this brain area. The results showed that intravenous injection of the F and H fractions induced convulsions, and intrahippocampal injection caused electrographic seizures in rats and neuronal damage in specific hippocampal areas. Fraction J injected intravenously reduced the general activity of mice in the open field but induced no changes when injected into the brain. These results suggest that scorpion toxins are able to act directly on the central nervous system promoting behavioural, electrographic and histological modifications. [source]