Home About us Contact | |||
Hereditary Motor (hereditary + motor)
Selected AbstractsN-MYC Downstream-Regulated Gene 1 Is Mutated In Hereditary Motor And Sensory Neuropathy-LOMJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001L Kalaydjieva Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival. [source] N-myc downstream-regulated gene 1 expression in injured sciatic nervesGLIA, Issue 4 2004Kazuho Hirata Abstract N-myc downstream-regulated gene 1 (NDRG1)/RTP/Drg1/Cap43/rit42/TDD5/Ndr1 is expressed ubiquitously and has been proposed to play a role in growth arrest and cell differentiation. A recent study showed that mutation of this gene is responsible for hereditary motor and sensory neuropathy-Lom. However, the role of this gene in the peripheral nervous system is not fully understood. In our study, rabbit polyclonal antibodies were raised against this gene product and were used to examine changes in its expression over the time course of Wallerian degeneration and ensuing regeneration after crush injury of mouse sciatic nerves. Fluorescent immunohistochemistry showed that NDRG1 was expressed over the intact nerve fibers. Double labeling with a Schwann cell (SC) marker, S-100 protein (S-100), revealed that NDRG1 was localized in the cytoplasm of S-100-positive Schwann cells (SCs). NDRG1 expression was maintained in the early stage of myelin degradation but was then markedly depleted at the end stage of myelin degradation when frequent occurrence of BrdU-labeled SCs was observed (at 7,9 days). The depletion of NDRG1 at this time point was also confirmed by Western blotting analysis. NDRG1 expression finally recovered at the stage of remyelination, with immunoreactivity stronger than that in intact nerves. These findings suggest that NDRG1 may play an important role in the terminal differentiation of SCs during nerve regeneration. © 2004 Wiley-Liss, Inc. [source] Dejerine-Sottas Neuropathy with Multiple Nerve Roots Enlargement and Hypomyelination Associated with a Missense Mutation of the Transmembrane Domain of MPZ/P0JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2003A Simonati In a patient affected with a slowly progressive, severe form of Dejerine-Sottas syndrome, symmetric enlargement of cranial nerves and focal hypertrophy of cervical and caudal roots were detected following MRI. Neuropathological features of the sural nerve disclosed a dramatic loss of myelinated fibres, with skewed-to-the-left, unimodal distribution of the few residual fibres, consistent with the diagnosis of congenital hypomyelination neuropathy. Genetic analysis revealed this condition to be associated with a heterozygous G to A transition at codon 167 in the exon 4 of the MPZ/P0 gene causing a Gly138Arg substitution in the transmembrane domain of the mature MPZ/P0 protein. Focal enlargement of the nerve trunks in demyelinating, hereditary motor and sensory neuropathies (HMSN) was previously reported in both asymptomatic and symptomatic cases with root compression, but peculiar to this case is the diffuse involvement of both cranial and spinal nerves. We believe that the relevance of nerve trunk hypertrophy in HMSN is probably underevaluated: therefore MRI investigation of the head and spine should be included in the diagnostic study of selected HMSN patients. Molecular analysis of peripheral myelin genes will help to rule out misdiagnosed cases. [source] Homozygous Defects In Lmna, Encoding Lamin A/C Nuclear-Envelope Proteins, Cause Autosomal Recessive Axonal Neuropathy In Human (Charcot-Marie-Tooth Disorder Type 2) And MouseJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2002A De Sandre-Giovannoli The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes-NF-L and KIF1Bbeta-have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Z(max) = 4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural explor- ation of sciatic nerves of LMNA null (i.e., ,/,) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1. [source] N-MYC Downstream-Regulated Gene 1 Is Mutated In Hereditary Motor And Sensory Neuropathy-LOMJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001L Kalaydjieva Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival. [source] The dominantly inherited motor and sensory neuropathies: Clinical and molecular advancesMUSCLE AND NERVE, Issue 5 2006Garth A. Nicholson MB Abstract The rapid advances in the molecular genetics and cell biology of hereditary neuropathy have revealed great genetic complexity. It is a challenge for physicians and laboratories to keep pace with new discoveries. Classification of hereditary neuropathies has evolved from a simple clinical to a detailed molecular classification. However, the molecular classification is not simple to use, as different mutations of the same gene produce a range of phenotypes. The logistics of testing for multiple gene mutations are considerable. This review gives a clinical overview of molecular and clinical advances in the dominant hereditary motor and sensory neuropathies [HMSNs, Charcot,Marie,Tooth (CMT) neuropathy], which account for some 60%,70% of families with CMT. The dominant forms of CMT have cellular mechanisms different from those of recessive forms and are a separate diagnostic challenge, so they are not included in this review. Diagnostic testing requires accurate clinical information and a selective approach to gene screening until the cost of multiple gene mutation screening falls. Accurate molecular diagnosis is critical to genetic counseling. This review concentrates on how molecular information can be used clinically, on how physicians can keep pace with new developments, and on the relevance of this new knowledge to patients. Muscle Nerve, 2006 [source] |