Home About us Contact | |||
Heavy Oil (heavy + oil)
Selected AbstractsGeochemistry of Heavy Oil in the T Block, Oriente Basin and its Origin MechanismACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010Ying HU Abstract: Exploration and development experience show that there is obvious oil gravity difference between the southern part and northern part of the "M1" reservoir in the Fanny oil field in the slope of the Oriente Basin, Ecuador. The American Petroleum Institute Gravity (API) values of oils in the northern part are higher than the one in the southern part of the Fanny oil field, with the values of 20° and 10.0°,13.0°, respectively. So the primary purpose of this study was to analyze the heavy oil characteristics of biodegradation and the oil,oil correlation according to the biomarker data and the ,13C signature of oil samples from T block. The results of the hydrocarbon gas chromatography fingermark and the inversion attribute characteristics indicated that there are fluid compartments between the "M1" reservoir of Fanny south. Finally, the models of oil,gas accumulation under the control of multiple-activities of complicated fault systems, as well as the origin of heavy oil, are contended. The early stage oils from the western part of the basin were biodegraded heavily in varying degrees in the whole basin, and the later stage oils were derived from the southern part in a large scale and were mature and lighter. Generally, oil mixing is the primary control of net oil properties, such as API gravity in Oriente Basin. We therefore predicted that the API gravity variation of oil pools radically depends on the injection amount of the later stage oil. Because of the shale barrier in the "M1" reservoir of Fanny south, the later stage hydrocarbon could not pass through and contribute to increase the oil API value. [source] Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accidentENVIRONMENTAL MICROBIOLOGY, Issue 4 2001Yuki Kasai In January 1997, the tanker Nakhodka sank in the Japan Sea, and more than 5000 tons of heavy oil leaked. The released oil contaminated more than 500 km of the coastline, and some still remained even by June 1999. To investigate the long-term influence of the Nakhodka oil spill on marine bacterial populations, sea water and residual oil were sampled from the oil-contaminated zones 10, 18, 22 and 29 months after the accident, and the bacterial populations in these samples were analysed by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments. The dominant DGGE bands were sequenced, and the sequences were compared with those in DNA sequence libraries. Most of the bacteria in the sea water samples were classified as the Cytophaga,Flavobacterium,Bacteroides phylum, ,- Proteobacteria or cyanobacteria. The bacteria detected in the oil paste samples were different from those detected in the sea water samples; they were types related to hydrocarbon degraders, exemplified by strains closely related to Sphingomonas subarctica and Alcanivorax borkumensis. The sizes of the major bacterial populations in the oil paste samples ranged from 3.4 × 105 to 1.6 × 106 bacteria per gram of oil paste, these low numbers explaining the slow rate of natural attenuation. [source] Hindered diffusion of residue narrow cuts through polycarbonate membranesAICHE JOURNAL, Issue 8 2010Zhentao Chen Abstract Hindered diffusion plays an important role in catalytic processing of residue and heavy oil because of large size molecules in these feedstocks. Vacuum residue of Athabasca oil sand bitumen was fractionated into 13 narrow fractions and an end-cut by supercritical fluid extraction and fractionation (SFEF). Diffusion transport of five SFEF cuts through four polycarbonate membranes was investigated using a diaphragm cell at 308 K. The results showed that diffusion coefficients of the five SFEF cuts decreased as the experiment proceeded, which illustrates that these cuts are polydisperse in size. The effective diffusion coefficients varied with molecular size and pore size. Hindered diffusion of the five SFEF cuts is significant in the membranes with nominal pore diameter of 15 nm, which is around the average pore size of typical hydrotreating catalyst. Comparisons between experimental data and theoretical prediction revealed that the actual hindered degree for diffusion of the five SFEF cuts is higher than that calculated by the Renkin equation. There were slight differences in diffusivity among saturate, aromatic, and resin constituents. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Production of bio-crude from forestry waste by hydro-liquefaction in sub-/super-critical methanolAICHE JOURNAL, Issue 3 2009Yun Yang Abstract Hydro-liquefaction of a woody biomass (birch powder) in sub-/super-critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473,673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio-crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4,25.5 wt % and 1.2,17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Effects of sand and process water pH on toluene diluted heavy oil in water emulsions in turbulent flowAICHE JOURNAL, Issue 1 2009Chandra W. Angle Abstract The presence of sand in heavy oil production is known to enhance oil recovery. Sand can also be detrimental depending on the properties of the sand,water interface. In this process, the water soluble material interacts with both sand and oil droplets and affects emulsion stability. The formation and stability of heavy oil-in-water emulsions during turbulent flow using batch process stirred-tank mixing of oil, sand, and water were investigated at three pH. Size distributions were measured by laser diffraction. High-speed video photomicrography was used to observe the process during mixing. Results showed that the presence of sand enhanced formation of stable, fine emulsion at basic pH 8.5. When the pH of the water was reduced below 6.5 both sand and droplets surface properties changed, the emulsions became less stable and coalescence was apparent. The sand grains acted as coalescers at low pH and enhanced breakage at high pH. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2008 AIChE J, 2009 [source] Size distributions and stability of toluene diluted heavy oil emulsionsAICHE JOURNAL, Issue 3 2006Chandra W. Angle Abstract The sizes and stability of oil droplets created from various concentrations of heavy oil-in-toluene at a fixed oil:water ratio were investigated during turbulent flow in model process water. The Reynolds number (Re) ranged from 17,000 to 34,500 and was obtained by stirred tank mixing with a Rushton turbine. The droplet sizes were monitored using laser light scattering. Results showed that at high Re and low oil concentrations (that is, low drop-surface coverage), breakage of the droplets was the dominant process, but as Re was reduced, coalescence was dominant. Droplets were less prone to breakage as the oil concentrations in toluene increased, and droplet sizes approached a steady state quickly during mixing. Their size distributions broadened and stability increased as heavy oil in toluene increased. Stability was attributed to a surface coverage by asphaltenes and the consequent interfacial elasticity that provided resilience to breakage. Equilibrium interfacial tension ,E was determined by fitting a diffusion-limited kinetic mathematical model to the data. The Gibbs adsorption model gave a monolayer surface coverage of 3 nm2/mol asphaltenes, consistent with other published results. High zeta potential of the droplets also hindered coalescence. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] BURIAL HISTORY RECONSTRUCTION AND THERMAL MODELLING AT KUH-E MOND, SW IRANJOURNAL OF PETROLEUM GEOLOGY, Issue 4 2003M. R. Kamali At the Kuh-e Mond anticline (Fars Province, SW Iran) and in nearby offshore structures, large volumes of natural gas are reservoired in the Permian , Early Triassic Dehram Group while heavy oil has been discovered in the Cretaceous Sarvak and Eocene Jahrum Formations. In this paper, we use data from six exploration wells and from nearby surface exposures to reconstruct the burial history at Kuh-e Mond. Regional observations show that the thick sedimentary fill in this part of the Zagros Basin was subjected to intense tectonism during the Zagros Orogeny, with a paroxysmal phase during the late Miocene and Pliocene. Thermal modelling and geochemical data from Kuh-e Mond and adjacent fields allows possible hydrocarbon generation and migration mechanisms to be identified. Maturities predicted using Lopatin's TTI model are in accordance with maturities obtained from vitrinite reflectance measurements. We show that formations which have source potential in the nearby Dezful Embayment (including the Pabdeh, Gurpi, Gadvan and Kazhdumi Formations) have not reached the oil window in the Mond wells. Moreover, their organic carbon content is very low as they were deposited in oxic, shallow-water settings. Underlying units (including the Ordovician and Cambrian) could have reached the gas window but contain little organic matter. Silurian shales (Sarchahan Formation), which generate gas at Kuh-e Gahkum and Kuh-e Faraghan (north of Bandar Abbas) and in Saudi Arabia and elsewhere in the Middle East, are absent from the Mond structure. The absence of source rocks suggests that the gas and heavy oil accumulations at Kuh-e Mond and at nearby fields have most probably undergone long-distance lateral migration from distant source kitchens. [source] Potential high temperature corrosion problems due to co-firing of biomass and fossil fuelsMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 10 2008M. Montgomery Abstract Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken. This results in potassium chloride being converted to potassium sulphate in the combustion chamber and it is sulphate rich deposits that are deposited on the vulnerable metallic surfaces such as high temperature superheaters. Although this removes the problem of chloride corrosion, other corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0,20% straw co-firing with coal, the plant now runs with a fuel mix of 10% straw,+,coal. Based on results from a 3 years exposure in this environment, the internal sulphidation is much more significant than that revealed in the demonstration project. Avedøre 2 main boiler is fuelled with wood pellets,+,heavy fuel oil,+,gas. Some reaction products resulting from the presence of vanadium compounds in the heavy oil were detected, i.e. iron vanadates. However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed. [source] Thermal Blending Time Associated With a Charge of Hot Particles Added to a Fluidized Bed of Uniform TemperatureTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2006W. A. Brown Abstract The process of heat transfer between particles in a fluidized bed is important for many industrial fluidized bed processes. The problem associated with studying this phenomenon is the confounding effect of particle mixing on heat transfer. The work described here was undertaken to describe the process in which heat is added to a fluid bed process by adding a hot charge of particles to a colder fluidized bed. The rate of heat transfer in this instance can have a significant impact on performance of the fluid bed process, depending upon its application. Both the method of analysis and the results of the work are applicable to other fluidized bed processes, particularly those associated with the thermal upgrading of heavy oil. The method of data analysis, based on binomial statistics, allowed useful data to be extracted from a complex system without the need for a large number of experiments. The analysis also allowed for some assessment of the relative importance of mixing and heat transfer, which has not been possible with other approaches. The results of the experiments were further explored using a bubbling bed model that incorporated both heat transfer and solids mixing. This allowed for the formation of a conceptual model, validated by the experimentation, that explains the relative functions of the two transfer processes in the dispersion of heat from a hot charge of particles to the bulk of a fluidized bed. Le procédé de transfert de chaleur entre les particules dans un lit fluidisé joue un rôle important dans de nombreux procédés industriels en lit fluidisé. Le problème associé à l'étude de ce phénomène est l'effet de confusion du mélange des particules sur le transfert de chaleur. Le travail décrit ici a été entrepris pour décrire le procédé dans lequel un lit fluidisé est chauffé en ajoutant une charge chaude de particules à lit fluidisé plus froid. Le taux de transfert de chaleur dans cet exemple peut avoir un impact significatif sur la performance du procédé en lit fluidisé, selon son application. Autant la méthode d'analyse que les résultats du travail sont applicables à d'autres procédés de lits fluidisés, en particulier ceux associés à la valorisation thermique de l'huile lourde. La méthode d'analyse des données, basée sur des statistiques binomiales, permet d'extraire des résultats utiles d'un système complexe sans avoir besoin de beaucoup d'expériences. L'analyse permet également de jauger l'importance relative du mélange et du transfert de chaleur, ce qui n'a pas été possible avec d'autres approches. Les résultats des expériences ont été analysés de manière plus approfondie au moyen d'un modèle à lit bouillonnant qui incorpore à la fois le transfert de chaleur et le mélange de solides. Ceci permet l'établissement d'un modèle conceptuel validé, qui explique les fonctions relatives des deux procédés de transfert dans la dispersion de la chaleur à partir d'une charge chaude de particules dans le coeur d'un lit fluidisé. [source] Enhancement of oil droplet removal from o/w emulsion by adding methylated milk casein in flotation techniqueASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2009Hideo Maruyama Abstract To clarify oil-in-water (o/w) emulsion, flotation experiments were conducted by adding methylated milk casein (MeCS), which is a biodegradable flocculant. Emulsion used in this study was prepared by ultrasonic emulsification of heavy oil (bunker-A) and sodium dodecyl sulfate (SDS) solution. It was found that addition of MeCS enhanced clarification of oil droplets from o/w emulsion solution due to floc formation by adding MeCS. An optimum dosage of MeCS to form effective floc was determined by the relative turbidity in a clarification experiment. In flotation experiments, clarification ability was evaluated by removal rate constant, k, obtained by fitting of turbidity data to a pseudo-first-order kinetic equation. In case of varying dosage of MeCS and keeping superficial gas velocity, Ug, at constant value (5.48 × 10,2 cm/s), removal rate was greatly influenced by amount of MeCS dosage. The maximum value of k was also obtained at the most optimum dosage of MeCS, and k decreased with adding lesser or larger amount of MeCS than the optimum dosage. On the other hand, in case of keeping the dosage of MeCS at the optimum dosage, and varying superficial gas velocity, up to Ug < ca. 0.2 cm/s, k was increased with increasing superficial gas velocity, and increase in removal rate of oil droplets was mostly proportional with increase in bubble surface area production rate. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Geochemistry of Heavy Oil in the T Block, Oriente Basin and its Origin MechanismACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010Ying HU Abstract: Exploration and development experience show that there is obvious oil gravity difference between the southern part and northern part of the "M1" reservoir in the Fanny oil field in the slope of the Oriente Basin, Ecuador. The American Petroleum Institute Gravity (API) values of oils in the northern part are higher than the one in the southern part of the Fanny oil field, with the values of 20° and 10.0°,13.0°, respectively. So the primary purpose of this study was to analyze the heavy oil characteristics of biodegradation and the oil,oil correlation according to the biomarker data and the ,13C signature of oil samples from T block. The results of the hydrocarbon gas chromatography fingermark and the inversion attribute characteristics indicated that there are fluid compartments between the "M1" reservoir of Fanny south. Finally, the models of oil,gas accumulation under the control of multiple-activities of complicated fault systems, as well as the origin of heavy oil, are contended. The early stage oils from the western part of the basin were biodegraded heavily in varying degrees in the whole basin, and the later stage oils were derived from the southern part in a large scale and were mature and lighter. Generally, oil mixing is the primary control of net oil properties, such as API gravity in Oriente Basin. We therefore predicted that the API gravity variation of oil pools radically depends on the injection amount of the later stage oil. Because of the shale barrier in the "M1" reservoir of Fanny south, the later stage hydrocarbon could not pass through and contribute to increase the oil API value. [source] Origin of the Silurian Crude Oils and Reservoir Formation Characteristics in the Tazhong UpliftACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010YANG Haijun Abstract: The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution. For this reason, the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area. Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks, i.e., heavy oils are distributed in the TZ47,15 well-block in the North Slope while normal and light oils in the No. I fault belt and the TZ16 well-block, which means that the oil properties are controlled by structural patterns. Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks, suggesting a good genetic relationship. However, the compound specific isotope of n -alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian,Lower Ordovician source rocks. Most Silurian oils have a record of secondary alterations like earlier biodegradation, including the occurrence of "UCM" humps in the total ion current (TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils, and regular changes in the abundances of light and heavy components from the structural low to the structural high. The fact that the Silurian oils are enriched in chain alkanes, e.g., n -alkanes and 25-norhopane, suggests that they were mixed oils of the earlier degraded oils with the later normal oils. It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions. The migration and accumulation models of these oils in the TZ47,15 well-blocks, the No. I fault belt and the TZ16 well-block are different from but related to each other. The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area. [source] |