Heating Effects (heating + effects)

Distribution by Scientific Domains


Selected Abstracts


Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis

ELECTROPHORESIS, Issue 22 2005
Christopher J. Evenhuis
Abstract Polymers are important as materials for manufacturing microfluidic devices for electrodriven separations, in which Joule heating is an unavoidable phenomenon. Heating effects were investigated in polymer capillaries using a CE setup. This study is the first step toward the longer-term objective of the study of heating effects occurring in polymeric microfluidic devices. The thermal conductivity of polymers is much smaller than that of fused silica (FS), resulting in less efficient dissipation of heat in polymeric capillaries. This study used conductance measurements as a temperature probe to determine the mean electrolyte temperatures in CE capillaries of different materials. Values for mean electrolyte temperatures in capillaries made of New Generation FluoroPolymer (NGFP), poly-(methylmethacrylate) (PMMA), and poly(ether ether ketone) (PEEK) capillaries were compared with those obtained for FS capillaries. Extrapolation of plots of conductance versus power per unit length (P/L) to zero power was used to obtain conductance values free of Joule heating effects. The ratio of the measured conductance values at different power levels to the conductance at zero power was used to determine the mean temperature of the electrolyte. For each type of capillary material, it was found that the average increase in the mean temperature of the electrolyte (,TMean) was directly proportional to P/L and inversely proportional to the thermal conductivity (,) of the capillary material. At 7.5,W/m, values for ,TMean for NGFP, PMMA, and PEEK were determined to be 36.6, 33.8, and 30.7°C, respectively. Under identical conditions, ,TMean for FS capillaries was 20.4°C. [source]


Generating heat from conducting polypyrrole-coated PET fabrics

ADVANCES IN POLYMER TECHNOLOGY, Issue 3 2005
Akif Kaynak
Abstract Heating effects in polypyrrole-coated polyethyleneterephthalate (PET)-Lycra® fabrics were studied. Chemical synthesis was employed to coat the PET fabrics by polypyrrole using ferric chloride as oxidant and antraquinone- 2-sulfonic acid (AQSA) and naphthalene sulfonic acid (NSA) as dopants. The coated fabrics exhibited reasonable electrical stability, possessed high electrical conductivity, and were effective in heat generation. Surface resistance of polypyrrole-coated fabrics ranged from approximately 150 to 500 ,/square. Different connections between conductive fabrics and the power source were examined. When subjected to a constant voltage of 24 V, the current transmitted through the fabric decreased about 10% in 72 h. An increase in resistance of conductive fabrics subjected to constant voltage was observed. © 2005 Wiley Periodicals, Inc. Adv Polym Techn 24: 194,207, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20040 [source]


Heating effects of the matrix of experimentally shocked Murchison CM chondrite: Comparison with micrometeorites

METEORITICS & PLANETARY SCIENCE, Issue 1 2007
Naotaka TOMIOKA
However, if a major fraction of micrometeorites are produced by impacts on porous asteroids, they may have experienced shock heating before contact with the Earth's atmosphere (Tomeoka et al. 2003). A transmission electron microscope (TEM) study of the matrix of Murchison CM chondrite experimentally shocked at pressures of 10,49 GPa shows that its mineralogy and texture change dramatically, mainly due to shock heating, with the progressive shock pressures. Tochilinite is completely decomposed to an amorphous material at 10 GPa. Fe-Mg serpentine is partially decomposed and decreases in amount with increasing pressure from 10 to 30 GPa and is completely decomposed at 36 GPa. At 49 GPa, the matrix is extensively melted and consists mostly of aggregates of equigranular grains of Fe-rich olivine and less abundant low-Ca pyroxene embedded in Si-rich glass. The mineralogy and texture of the shocked samples are similar to those of some types of micrometeorites. In particular, the samples shocked at 10 and 21 GPa are similar to the phyllosilicate (serpentine)-rich micrometeorites, and the sample shocked at 49 GPa is similar to the olivine-rich micrometeorites. The shock heating effects also resemble the effects of pulse-heating experiments on the CI and CM chondrite matrices that were conducted to simulate atmospheric entry heating. We suggest that micrometeorites derived from porous asteroids are likely to go through both shock and atmospheric-entry heating processes. [source]


Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications

ELECTROPHORESIS, Issue 10 2006
Brian Kates
Abstract IEF is a high-resolution separation method taking place in a medium with continuous pH gradients, which can be set up by applying electrical field to the liquid in a diverging microchannel. The axial variation of the channel cross-sectional area will induce nonuniform Joule heating and set up temperature gradient, which will generate pH gradient when proper medium is used. In order to operationally control the thermally generated pH gradients, fundamental understanding of heat transfer phenomena in microfluidic chips with diverging microchannels must be improved. In this paper, two 3-D numerical models are presented to study heat transfer in diverging microchannels, with static and moving liquid, respectively. Through simulation, the temperature distribution for the entire chip has been revealed, including both liquid and solid regions. The model for the static liquid scenario has been compared with published results for validation. Parametric studies have showed that the channel geometry has significant effects on the peak temperature location, and the electrical conductivity of the medium and the wall boundary convection have effects on the generated temperature gradients and thus the generated pH gradients. The solution to the continuous flow model, where the medium convection is considered, shows that liquid convection has significant effects on temperature distribution and the peak temperature location. [source]


Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis

ELECTROPHORESIS, Issue 22 2005
Christopher J. Evenhuis
Abstract Polymers are important as materials for manufacturing microfluidic devices for electrodriven separations, in which Joule heating is an unavoidable phenomenon. Heating effects were investigated in polymer capillaries using a CE setup. This study is the first step toward the longer-term objective of the study of heating effects occurring in polymeric microfluidic devices. The thermal conductivity of polymers is much smaller than that of fused silica (FS), resulting in less efficient dissipation of heat in polymeric capillaries. This study used conductance measurements as a temperature probe to determine the mean electrolyte temperatures in CE capillaries of different materials. Values for mean electrolyte temperatures in capillaries made of New Generation FluoroPolymer (NGFP), poly-(methylmethacrylate) (PMMA), and poly(ether ether ketone) (PEEK) capillaries were compared with those obtained for FS capillaries. Extrapolation of plots of conductance versus power per unit length (P/L) to zero power was used to obtain conductance values free of Joule heating effects. The ratio of the measured conductance values at different power levels to the conductance at zero power was used to determine the mean temperature of the electrolyte. For each type of capillary material, it was found that the average increase in the mean temperature of the electrolyte (,TMean) was directly proportional to P/L and inversely proportional to the thermal conductivity (,) of the capillary material. At 7.5,W/m, values for ,TMean for NGFP, PMMA, and PEEK were determined to be 36.6, 33.8, and 30.7°C, respectively. Under identical conditions, ,TMean for FS capillaries was 20.4°C. [source]


A single magnetic field exposure system for sequential investigation of real time and downstream cellular responses

BIOELECTROMAGNETICS, Issue 1 2004
Raj R. Rao
Abstract To be able to correlate real time membrane potential or ion flux changes with further downstream gene transcription responses due to extremely low frequency (ELF) electromagnetic field (EMF) exposure, we devised an experimental system consisting of a pair of symmetric circular coils. This system can be used on an inverted microscope stage (real time signaling) as well as inside controlled environment incubators (gene transcription end points). The system includes a unique, custom made switch box for blinding the experimental staff and a power amplifier. We report herein the design and characterization of the system with respect to parameters considered important in in vitro ELF,EMF exposure studies, including linear magnetic field distribution, compensation for microscope objective lens interference, heating effects of the coils, and harmonic content of the signals. Bioelectromagnetics 25:27,32, 2004. © 2003 Wiley-Liss, Inc. [source]