Home About us Contact | |||
Hexanal
Selected AbstractsCharacterisation of the volatiles of yellowfin tuna (Thunnus albacares) during storage by solid phase microextraction and GC,MS and their relationship to fish quality parametersINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 10 2007Ranjith K.B. Edirisinghe Summary Investigations were carried out to extract the volatile compounds of fish using solid phase microextraction (SPME) in order to develop a new rapid indicator for determining the quality of fish. Changes in the aroma composition of yellowfin tuna (Thunnus albacares) was studied at 30 °C and in ice, using SPME GC,MS, and their relationship with the fish quality parameters , total volatile basic nitrogen and sensory analysis , was determined using principal component analysis (PCA) and stepwise multiple regression analysis. Hexanal (30.9%) and 2-nonanone (28.4%) were recorded in relatively high amounts in fresh fish, whereas 3-methyl-1-butanol and 3-hydroxy-2-butanone increased with storage time. PCA clearly differentiated the volatile profile of each sampling stage (P < 0.05) throughout storage treatments. Regression analysis showed a significant relationship between the fish quality and the levels of 3-methyl-1-butanol and pentadecane. The findings highlight the possibility of developing a rapid quality evaluation method for fish using SPME GC,MS. [source] Flavor Variability and Flavor Stability of U.S.-Produced Whole Milk PowderJOURNAL OF FOOD SCIENCE, Issue 7 2009M.A. Lloyd ABSTRACT:, Flavor variability and stability of U.S.-produced whole milk powder (WMP) are important parameters for maximizing quality and global competitiveness of this commodity. This study characterized flavor and flavor stability of domestic WMP. Freshly produced (<1 mo) WMP was collected from 4 U.S. production facilities 5 times over a 1 y period. Each sample was analyzed initially and every 2 mo for sensory profile, volatiles, color, water activity, and moisture through 12 mo storage. Selected volatiles were quantified using solid phase microextraction (SPME) with gas chromatography/mass-spectrometry: dimethyl sulfide, 2-methylbutanal, 3-methylbutanal, hexanal, 2-heptanone, heptanal, 1-octen-3-ol, octanal, 3-octen-2-one, and nonanal. Multiple linear regression with backwards elimination was applied to generate equations to predict grassy and painty flavors based on selected volatiles. All WMP were between 2% and 3% moisture and 0.11 and 0.25 water activity initially. WMP varied in initial flavor profiles with varying levels of cooked, milk fat, and sweet aromatic flavors. During storage, grassy and painty flavors developed while sweet aromatic flavor intensities decreased (P,< 0.05). Painty and grassy flavors were confirmed by increased levels (P,< 0.05) of lipid oxidation products such as hexanal, heptanal, and octanal. Hexanal, 2-heptanone, 1-octen-3-ol, and nonanal concentrations were best predictors of grassy flavor (R2= 0.38,,P,< 0.0001) while hexanal, 2-methylbutanal, 3-methylbutanal, octanal, and 3-octen-2-one concentrations were best predictors of painty flavor (R2= 0.61,,P,< 0.0001). These results provide baseline information to determine specific factors that can be controlled to optimize U.S. WMP flavor and flavor stability. [source] Potato Chip Quality and Frying Oil Stability of High Oleic Acid Soybean OilJOURNAL OF FOOD SCIENCE, Issue 6 2005Kathleen Warner ABSTRACT High oleic soybean (HOSBO) and low linolenic acid soybean (LLSBO) oils were evaluated individually and in a 1:1 blend along with cottonseed oil (CSO) to determine frying oil stabilities and the flavor quality and stability of potato chips. Potato chips were fried in the oils for a total of 25 h. Potato chips and oils were sampled periodically for sensory data, gas chromatographic volatile compounds, free fatty acids, and total polar compounds. Total polar compounds levels decreased with increasing amounts of oleic acid. The LLSBO had the highest overall increase (17.3%) in total polar compounds from 0 to 25 h of frying. Flavor evaluations of fresh and aged (0, 1, 3, 5, and 7 wk at 25 °C) potato chips showed differences between potato chips fried in different oil types. Potato chips fried in either LLSBO or in the 1:1 blend had significantly higher intensities of deep fried flavor than the chips fried in HOSBO. Potato chips fried in HOSBO, which had 2% linolenic acid and 1.3% linoleic acid, had significantly higher fishy flavor intensity than chips fried in the other oils. The presence of linoleic acid at a level lower than the amount of linolenic acid probably allowed for the fishy flavors from the degradation of linolenic acid in HOSBO to become more apparent than if the linoleic acid level was higher than linolenic acid. Hexanal was significantly higher in potato chips fried in LLSBO than in the chips fried in the other oils, indicating low oxidative stability during storage. Blending HOSBO with LLSBO in a 1:1 ratio not only improved flavor quality of chips compared with those fried in HOSBO, but also improved oil fry life and oxidative stability of chips compared with LLSBO. [source] Use of a plant-derived enzyme template for the production of the green-note volatile hexanalBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003Frank Schade Abstract Hexanal is a key organoleptic element of green-note that is found in both fragrances and flavors. We report a novel process for the production of hexanal using immobilized enzyme templates extracted from different plant sources in combination with hollow-fiber ultrafiltration for in situ separation. Enzyme templates, known to be responsible for the synthesis of hexanal from linoleic acid (18:2), were isolated from naturally enriched tissues including carnation petals, strawberry and tomato leaves. These templates were immobilized in an alginate matrix and used as a biocatalyst in a packed-bed bioreactor. Continuous product recovery was achieved using a hollow-fiber ultrafiltration unit. The effects of pH, reaction temperature, and substrate and enzyme concentrations were studied and their effects on hexanal generation identified and optimized. Utilizing optimized conditions, hexanal production 112-fold higher than endogenous steady-state levels in a corresponding amount of plant tissue could be achieved over a 30-minute period. Based on the reactor studies, product inhibition also appears to be an important factor for bioreactor-based hexanal production. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 265,273, 2003. [source] Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MSEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 2 2009Stefanie Bail Abstract Several nut oil varieties mainly used as culinary and overall healthy food ingredients were subject of the present study. Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was employed in order to determine the qualitative composition of volatile compounds. Furthermore, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used in order to assess the profiles and relative composition of the prevalent triacylglycerols (TAG) within the oils. The headspace of the majority of oil samples was dominated by high contents of acetic acid (up to 42%) and hexanal (up to 32%). As nut oils are typically gained by cold-pressing from previously roasted nuts, characteristic pyrazine derivatives as well as degradation products of long-chain fatty acids were detected. TAG analysis of these oils revealed a quite homogeneous composition dominated by components of the C52 and C54 group composed mainly of oleic (18:1), linoleic (18:2), stearic (18:0) and palmitic (16:0) acid residues representing together between 65 and 95% of the investigated nut oils. The TAG profiles showed characteristic patterns which can be used as ,fingerprints' of the genuine oils. Nut oils exhibiting quite similar fatty acid composition (e.g. hazelnut, pistachio and beech oil) could be clearly discriminated based on TAG showing significant differences between the oils. [source] Monitoring of headspace volatiles in milk-cereal-based liquid infant foods during storageEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 12 2006Guadalupe García-Llatas Abstract The effect of storage (time and temperature) on the evolution of pentanal, hexanal, heptanal and pentane as volatile lipid oxidation products in two liquid ready-to-eat milk-cereal-based infant foods was studied. An SPME-GC method was used to this effect. Samples were stored for 9,months at 25, 30 and 37,°C and tested eight times during this period. Freshly produced infant foods contained pentanal, hexanal and heptanal (mean values: 10.71, 71.5 and 1.2,µg/kg, respectively), which decreased during the first 3,months of storage, although from the fourth month onwards no significant differences among storage times were found. Aldehyde content was inversely proportional to storage temperature. Pentane content was directly proportional to storage temperature and increased (19.9,µg/kg at zero time) over all months of storage up to 43.1,µg/kg. [source] Odorant specificity of three oscillations and the DC signal in the turtle olfactory bulbEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Ying-Wan Lam Abstract The odour-induced population response in the in vivo turtle (Terepene sp.) olfactory bulb consists of three oscillatory components (rostral, middle and caudal) that ride on top of a DC signal. In an initial step to determine the functional role of these four signals, we compared the signals elicited by different odorants. Most experiments compared isoamyl acetate and cineole, odorants which have very different maps of input to olfactory bulb glomeruli in the turtle and a different perceptual quality for humans. We found substantial differences in the response to the two odours in the rise-time of the DC signal and in the latency of the middle oscillation. The rate of rise for cineole was twice as fast as that for isoamyl acetate. Similarly, the latency for the middle oscillation was about twice as long for isoamyl acetate as it was for cineole. On the other hand, a number of characteristics of the signals were not substantially different for the two odorants. These included the latency of the rostral and caudal oscillation, the frequency and envelope of all three oscillations and their locations and spatial extents. A smaller number of experiments were carried out with hexanone and hexanal; the oscillations elicited by these odorants did not appear to be different from those elicited by isoamyl acetate and cineole. Qualitative differences between the oscillations in the turtle and those in two invertebrate phyla suggest that different odour processing strategies may be used. [source] Character impact odorants from wild mushroom (Lactarius hatsudake) used in Japanese traditional foodFLAVOUR AND FRAGRANCE JOURNAL, Issue 4 2010Mitsuo Miyazawa Abstract The components of the volatile oil from wild mushroom (Lactarius hatsudake), used in Japanese traditional food, were analysed and quantified for the first time by capillary GC and GC,MS. Seventy-six components were separated from the oil and of these 71 components were identified. The main components of the oil were oxidized sesquiterpenes [cis -isolongifolanone (624.9,,g/100,g), , -cedrene epoxide (578.7,,g/100,g), humulene epoxide III (453.9,,g/100,g), clovane (425.4,,g/100,g)], aliphatic acids [linoleic acid (585.9,,g/100,g) and palmitoleic acid (333.3,,g/100,g)]. Odour evaluation of the volatile oil from L. hatsudake was also carried out using GC,MS/olfactometry (GC,MS/O) and aroma extract dilution analysis (AEDA), from which it was found that hexanal, 4-dehydroviridiflorol, myliol and phenylacetaldehyde seem to contribute to the green, spicy and sweet odour of L. hatsudake. Copyright © 2010 John Wiley & Sons, Ltd. [source] Characterization of the aroma-active compounds in five sweet cherry cultivars grown in Yantai (China)FLAVOUR AND FRAGRANCE JOURNAL, Issue 4 2010Shu Yang Sun Abstract This study was conducted to determine the aroma-active compounds of five sweet cherry cultivars grown in Yantai region, China, viz. ,Lapins', ,Rainier', ,Stella', ,Hongdeng' and ,Zhifuhong'. The samples were extracted by headspace solid phase microextraction (HS,SPME) and analysed by gas chromatography,mass spectrometry (GC,MS) on DB-wax and DB-5 columns. A total of 52 volatiles were identified. Among these, hexanal, (E)-2-hexenal, 1-hexanol, (E)-2-hexen-1-ol, benzaldehyde and benzyl alcohol were the main volatile compounds in the five cherries. Furthermore, the aroma compounds of five cherry samples were evaluated using a combination of HS,SPME and GC,olfactometry (GC,O) dilution analysis, and a total of 40 aroma-active compounds were identified. The results suggested that hexanal, (E)-2-hexenal, (Z)-3-hexenal, nonanal, benzaldehyde and geranylacetone (FD , 16), responsible for the green, orange, almond and floral characters of the cherries, were the potentially important common odorants in these cherry cultivars. Benzyl alcohol and linalool were significant aroma compounds in most cherries, with the exception of ,Stella' and ,Rainier'. In addition, (E,Z)-2,6-nonadienal (cucumber-like odour) could be important to ,Hongdeng' and ,Zhifuhong', and (E,E)-2,4-nonadienal (fatty odour) probably made great contributions to the aromas in ,Lapins' and ,Stella'. From the present result, it was concluded that the aroma profiles were similar in the five cherry cultivars, but significant variation was found in the contributions of these compounds to each cherry. Copyright © 2010 John Wiley & Sons, Ltd. [source] Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC,MS and GC,OFLAVOUR AND FRAGRANCE JOURNAL, Issue 2 2008M. Consuelo Díaz-Maroto Abstract Gas chromatography,mass spectrometry (GC,MS) and gas chromatography,olfactometry (GC,O) were used to study aroma-active compounds in extracts of American, French, Hungarian and Russian oak woods. Compounds that presented high odour intensities for the non-toasted oak woods were guaiacol, hexanal, trans -2-nonenal, trans -oak lactone, cis- oak lactone, eugenol, vanillin and trans- isoeugenol, whilst the same compounds, in addition to furfural, 4-methylguaiacol and cis -isoeugenol, proved important in the toasted oaks. Like the oak lactones, cis- and trans- isoeugenol presented woody/oak odours, particularly in the toasted samples. For Hungarian and Russian samples, both characterized by their lower content of oak lactones, trans- and cis- isoeugenol presented higher odour intensities. For this reason, samples of low oak lactone concentrations, such as Hungarian and Russian oak woods, but also containing isoeugenols, can impart woody/oak odours to wines. Copyright © 2008 John Wiley & Sons, Ltd. [source] Odour-active compounds of Jinhua hamFLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2008Huanlu Song Abstract Using DHS, SAFE, GC,O and GC,MS, the odour-active compounds of Jinhua ham were identified and ranked according their odour potencies. For DHS, the ham powder was purged with a nitrogen stream at a flow rate of 50 ml/min for 25 min, 5 min and 1 min, respectively. The effluent of sample headspace was trapped by a Tenax tube, which was placed onto the vessel for GC,O. The most important odorants (FD factor = 125) in Jinhua ham headspace were ethyl 2-methylbutanoate/ethyl 3-methylbutanoate, hexanal, 1-hexen-3-one, 1-octen-3-one, 2-acetyl-1-pyrroline and 2-methoxyphenol, followed by the following odorants (FD factor = 25): 3-methyl butanal, dimethyl trisulphide, 1-nonen-3-one, butanoic acid, phenylacetaldehyde, 3-methylbutanoic acid, 2-methyl(3-methyldithio)furan, , -nonalctone and 4-methylphenol (p -cresol). For SAFE, the ham powder was extracted with diethyl ether, distilled by SAFE and then separated into neutral/basic and acidic fractions. Both fractions were subjected to AEDA. The relatively high-odour impact compounds (Log3FD Factor ,5) of the N/B fraction of SAFE extract of Jinhua ham were 1-octen-one, ethyl 3-methylbutanoate, methional, phenylacetaldehyde, 2-phenylethanol, (E)-4,5-epoxy-(E)-decenal, p -cresol (4-methylphenol); 3-methylbutanal, hexanal, 2-acetyl-1-pyrroline, decanal, (E,Z)-2,6-nonadienal and (E,E)-decadienal. The important odorants of the Ac fraction of SAFE extract of Jinhua ham were butanoic acid, 3-methylbutanoic acid, hexanoic acid, phenylacetic acid and an unknown. It was shown that the aroma of Jinhua ham consisted of a variety of compounds having different odour properties; a single compound could not characterize the aroma of Jinhua ham. Copyright © 2008 John Wiley & Sons, Ltd. [source] Chemical composition of essential oils of two submerged macrophytes, Ceratophyllum demersum L. and Vallisneria spiralis L.FLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2006Xian Qiming Abstract The essential oils from leaves of Ceratophyllum demersum L. and Vallisneria spiralis L. from China were isolated by steam distillation in yields of 0.15% and 0.10%, respectively, and their chemical composition was examined by GC and GC,MS. More than 50 constituents were identified, representing 87% of the total oils. The main components were basically the same in the two plants' essential oils. 2-Methylpropanoic acid 3-hydroxy-2,4,4-trimethylpentyl ester (>15%), 2-methylpropanoic acid 2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester (>3%), , -ionone-5,6-epoxide (>7%), toluene (>6%), hexanal (>5%) and 1,2-benzenedicarboxylic acid di(2-methylpropyl) ester (>5%) were the major components. Copyright © 2006 John Wiley & Sons, Ltd. [source] Volatile composition of the laksa plant (Polygonum hydropiper L.), a potential source of green note aroma compoundsFLAVOUR AND FRAGRANCE JOURNAL, Issue 5 2005J. Jiang Abstract Volatile compounds were extracted from laksa plant (Polygonum hydropiper L.) by three isolation techniques,dynamic headspace sampling, simultaneous distillation and extraction (SDE) and liquid,liquid extraction with dichloromethane (DCM). In the GC,MS analysis of the volatile extracts, a total of 46 compounds were identi,ed, including 14 carbonyls, 14 alcohols, 10 hydrocarbons, four esters, two furans, one acid and one base. Carbonyls (aldehydes/ketones) and alcohols are the predominant classes of volatile compounds, accounting for almost 90% (or above) of the total volatiles extracted from the plant. The major compounds include dodecanal (3,40%), (E)-2-hexenal (20,35%), decanal (4,22%), (Z)-3-hexen-1-ol (4,31%), hexanal (1.7,5.1%) and , -caryophyllene (1.7,2.3%). Signi,cantly high levels of both (E)-2-hexenal (leaf aldehyde) and (Z)-3-hexen-1-ol (leaf alcohol) may make the weed plant become a potential source of green note aroma componds. More (Z)-3-hexen-1-ol was found in the stem while more (E)-2-hexenal was detected in the leaf. The laksa stem appeared to contain more decanal and dodecanal but less esters than the leaf. Different isolation techniques produced volatile extracts with different proportions of the major volatile components. Copyright © 2005 John Wiley & Sons, Ltd. [source] Effects of the nature and concentration of substrates in aqueous solutions on the solubility of aroma compoundsFLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2005Marco Covarrubias-Cervantes Abstract The solubility of nine aroma compounds (acetone, 2-butanone, 2-hexanone, 2-octanone, ethyl acetate, ethyl butanoate, ethyl hexanoate, n -hexanal, and n -hexanol) in both water and various aqueous solutions was measured at 25 °C using the mutual solubility method. The aqueous solutions consisted of sucrose, glucose, sorbitol, glycerol, polyethylene glycol 200, or maltodextrins at different concentrations. Aroma solubility in water decreased with increased hydrophobicity. For aroma molecules which have the same number of carbon atoms in their structure, aqueous solubility decreased as follows: aldehyde > methyl ketone > alcohol > ethyl ester. When using a group contribution method, the estimated solubility of ethyl esters and methyl ketones in water was, respectively, underestimated and overestimated. Compared to water, the solubility of the volatile molecules in aqueous solutions was higher in the aqueous polyols solutions than in the carbohydrate solutions, although solubility decreased as substrate concentration increased. Aqueous solutions properties, such as water activity, also in,uenced aroma compound solubility. Copyright © 2004 John Wiley & Sons, Ltd. [source] Breath gas aldehydes as biomarkers of lung cancerINTERNATIONAL JOURNAL OF CANCER, Issue 11 2010Patricia Fuchs Abstract There is experimental evidence that volatile substances in human breath can reflect presence of neoplasma. Volatile aldehydes were determined in exhaled breath of 12 lung cancer patients, 12 smokers and 12 healthy volunteers. Alveolar breath samples were collected under control of expired CO2. Reactive aldehydes were transformed into stable oximes by means of on-fiber-derivatization (SPME-OFD). Aldehyde concentrations in the ppt and ppb level were determined by means of gas chromatography-mass spectrometry (GC-MS). Exhaled concentrations were corrected for inspired values. Exhaled C1,C10 aldehydes could be detected in all healthy volunteers, smokers and lung cancer patients. Concentrations ranged from 7 pmol/l (161 pptV) for butanal to 71 nmol/l (1,582 ppbV) for formaldehyde. Highest inspired concentrations were found for formaldehyde and acetaldehyde (0,55 nmol/l and 0,13 nmol/l, respectively). Acetaldehyde, propanal, butanal, heptanal and decanal concentrations showed no significant differences for cancer patients, smokers and healthy volunteers. Exhaled pentanal, hexanal, octanal and nonanal concentrations were significantly higher in lung cancer patients than in smokers and healthy controls (ppentanal = 0.001; phexanal = 0.006; poctanal = 0.014; pnonanal = 0.025). Sensitivity and specificity of this method were comparable to the diagnostic certitude of conventional serum markers and CT imaging. Lung cancer patients could be identified by means of exhaled pentanal, hexanal, octanal and nonanal concentrations. Exhaled aldehydes reflect aspects of oxidative stress and tumor-specific tissue composition and metabolism. Noninvasive recognition of lung malignancies may be realized if analytical skills, biochemical knowledge and medical expertise are combined into a joint effort. [source] Kinetics of the gas-phase reaction of n -C6,C10 aldehydes with the nitrate radicalINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 3 2003Jun Noda Rate coefficients for gas-phase reaction between nitrate radicals and the n -C6,C10 aldehydes have been determined by a relative rate technique. All experiments were carried out at 297 ± 2 K, 1020 ± 10 mbar and using synthetic air or nitrogen as the bath gas. The experiments were made with a collapsible sampling bag as reaction chamber, employing solid-phase micro extraction for sampling and gas chromatography/flame ionization detection for analysis of the reaction mixtures. One limited set of experiments was carried out using a glass reactor and long-path FTIR spectroscopy. The results show good agreement between the different techniques and conditions employed as well as with previous studies (where available). With butanal as reference compound, the determined values (in units of 10,14 cm3 molecule,1 s,1) for each of the aldehydes were as follows: hexanal, 1.7 ± 0.1; heptanal, 2.1 ± 0.3; octanal, 1.5 ± 0.2; nonanal, 1.8 ± 0.2; and decanal, 2.2 ± 0.4. With propene as reference compound, the determined rate coefficients were as follows: heptanal, 1.9 ± 0.2; octanal, 2.0 ± 0.3; and nonanal, 2.2 ± 0.3. With 1-butene as reference compound, the rate coefficients for hexanal and heptanal were 1.6 ± 0.2 and 1.8 ± 0.1, respectively. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 120,129, 2003 [source] Pine shoot beetle, Tomicus piniperda (Col., Scolytidae), responses to common green leaf volatilesJOURNAL OF APPLIED ENTOMOLOGY, Issue 2 2000T. M. Poland We tested the hypothesis that green leaf volatiles (GLVs) disrupt the response of overwintered pine shoot beetles, Tomicus piniperda (L.) to multiple-funnel traps baited with the attractive host volatile ,-pinene. A combination of four GLV alcohols, 1-hexanol (E)-2-hexen-1-ol (Z)-2-hexen-1-ol, and (Z)-3-hexen-1-ol, caused 54 and 36% reduction in the number of pine shoot beetles captured in two separate trapping experiments. Similarly, a combination of the four alcohols plus two GLV aldehydes, hexanal and (E)-2-hexenal, caused 38% reduction in the number of pine shoot beetles captured compared with ,-pinene alone. A blend of the two GLV aldehydes was not disruptive. None of the four GLV alcohols nor the two GLV aldehydes were disruptive when tested individually. The finding that the blend of four GLV alcohols reduced attraction of T. piniperda supports the general hypothesis that GLVs common to nonhost angiosperms are disruptive to conifer-attacking bark beetles (Scolytidae). [source] The Impact of Antioxidant Addition on Flavor of Cheddar and Mozzarella Whey and Cheddar Whey Protein ConcentrateJOURNAL OF FOOD SCIENCE, Issue 6 2010I.W. Liaw Abstract:, Lipid oxidation products are primary contributors to whey ingredient off-flavors. The objectives of this study were to evaluate the impact of antioxidant addition in prevention of flavor deterioration of fluid whey and spray-dried whey protein. Cheddar and Mozzarella cheeses were manufactured in triplicate. Fresh whey was collected, pasteurized, and defatted by centrifugal separation. Subsequently, 0.05% (w/w) ascorbic acid or 0.5% (w/w) whey protein hydrolysate (WPH) were added to the pasteurized whey. A control with no antioxidant addition was also evaluated. Wheys were stored at 3 °C and evaluated after 0, 2, 4, 6, and 8 d. In a subsequent experiment, selected treatments were then incorporated into liquid Cheddar whey and processed into whey protein concentrate (WPC). Whey and WPC flavors were documented by descriptive sensory analysis, and volatile components were evaluated by solid phase micro-extraction with gas chromatography mass spectrometry. Cardboard flavors increased in fluid wheys with storage. Liquid wheys with ascorbic acid or WPH had lower cardboard flavor across storage compared to control whey. Lipid oxidation products, hexanal, heptanal, octanal, and nonanal increased in liquid whey during storage, but liquid whey with added ascorbic acid or WPH had lower concentrations of these products compared to untreated controls. Mozzarella liquid whey had lower flavor intensities than Cheddar whey initially and after refrigerated storage. WPC with added ascorbic acid or WPH had lower cardboard flavor and lower concentrations of pentanal, heptanal, and nonanal compared to control WPC. These results suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to flavor of spray-dried whey protein. Practical Application:, Lipid oxidation products are primary contributors to whey ingredient off-flavors. Flavor plays a critical and limiting role in widespread use of dried whey ingredients, and enhanced understanding of flavor and flavor formation as well as methods to control or minimize flavor formation during processing are industrially relevant. The results from this study suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to minimize flavor of spray-dried whey protein. [source] Impact of Harvesting and Processing Conditions on Green Leaf Volatile Development and Phenolics in Concord Grape JuiceJOURNAL OF FOOD SCIENCE, Issue 3 2010M.M. Iyer ABSTRACT:, The disruption of plant cell walls during fruit juice processing results in the enzymatic formation of herbaceous-smelling green leaf volatiles (GLVs). Our objective was to assess the impact of thermal processing conditions on resulting levels of GLVs (hexanal, trans -2-hexenal, hexanol, cis -3-hexenol, and trans -2-hexenol), total phenols, monomeric anthocyanins, and percent polymeric color in Concord grape juice. The effects of fruit maturity and stage of juice processing on juice GLV content was also assessed. Of the GLVs studied, only trans -2-hexenal routinely exceeded its published sensory threshold in finished juice. We observed an inverse linear correlation between berry maturity (total soluble solids) and trans -2-hexenal levels in finished juice (P,< 0.05, R 2= 0.91). Trans -2-hexenal was at a maximum immediately following crushing (569 ,g/kg, >30-fold over detection threshold [DT]), decreased to 100 ,g/kg following depectinization, pressing, and pasteurization, and to 32 ,g/kg following cold-stabilization. The loss of trans -2-hexenal could be explained primarily by its reduction to trans -2-hexenol, which increased from 53 ,g/kg after crushing to 500 ,g/kg after cold-stabilization. High temperature pretreatment of must immediately following crushing ("hot break") resulted in 5- to 6-fold higher concentrations of trans -2-hexenal in the final bottled juice as compared to conventional hot press. Contrary to expectations, no significant increase in phenolics and anthocyanins were observed in hot break conditions. These results indicate that hot break procedures may thermally inactivate enzymes responsible for transforming trans -2-hexenal under normal processing conditions and potentially alter the flavor qualities of the finished Concord juice. Different equivalent pasteurization regimes (82 to 93 °C) prior to bottling had no significant effect on GLV content of the finished Concord juices (P,> 0.05). Practical Application: Introducing new processing techniques to fruit juice production can potentially result in undesirable changes to organoleptic properties. We have observed significantly higher levels of trans- 2-hexenal, a potent herbaceous off-flavor, in Concord grape juice prepared with an initial high temperature heat treatment ("hot break"). Concord juice producers should be cautious in using hot break processing, especially with immature fruit, as it may result in persistence of green aromas in juice. [source] Combination of Super Chilling and High Carbon Dioxide Concentration Techniques Most Effectively to Preserve Freshness of Shell Eggs during Long-Term StorageJOURNAL OF FOOD SCIENCE, Issue 1 2010T. Yanagisawa ABSTRACT:, This study was made to examine the combined effects of stored temperature and carbon dioxide atmosphere on shell egg quality. The shell eggs were packed into polyethylene terephthalate/polyethylene (PET/PE) pouches and stored at 0 °C (super chilling), 10 °C, and 20 °C, respectively for 90 d. The atmospheric carbon dioxide concentration was controlled to obtain the 3 concentration levels of high (about 2.0%), medium (about 0.5%), and low (below 0.01%). Changes in Haugh unit (HU) values, weakening of vitelline membranes, and generation of volatiles were analyzed to evaluate the freshness of shell eggs. Results showed that, compared with the other combinations, the technique of super chilling and high carbon dioxide concentration enabled shell eggs to be most effectively stored for 90 d, based on estimations of the statistical significances of differences in HU values, and on maintaining the initial HU values during storage. In addition, the storage of shell eggs using this combination technique was found to significantly prevent the weakening of the vitelline membrane based on the estimations of numbers of eggs without vitelline membrane breakage when eggs broke, and significantly lowered the incidence of hexanal in the yolk from exposure to the gas chromatographic-mass spectrometric analyses of volatiles. Thus, these results confirmed that the combination of super chilling and high carbon dioxide concentration was the most effective technique for preserving shell eggs during a long term of 90 d compared with other combination techniques. [source] Changes of Headspace Volatiles in Milk with Riboflavin PhotosensitizationJOURNAL OF FOOD SCIENCE, Issue 7 2009J.H. Lee ABSTRACT:, Effects of fluorescent light, riboflavin, ascorbic acid, sodium azide, and butylated hydroxyanisole (BHA) on the volatiles in milk at 4 °C were determined using a combination of headspace-solid phase microextraction (HS-SPME), gas chromatography (GC), and mass spectrometry (MS). Pentanal, hexanal, heptanal, and dimethyl disulfide were formed only in the milk stored under light and increased significantly as the duration of light exposure increased from 0 to 8 h and the concentration of added riboflavin increased from 5 to 50 ppm (P,< 0.05). As fat content in milk increased, peak areas of pentanal, hexanal, and heptanal increased significantly (P,< 0.05) while those of dimethyl disulfide did not change significantly (P,> 0.05). Sodium azide prevented the formation of dimethyl disulfide in milk, implying that dimethyl disulfide can be formed through singlet oxygen oxidation (type II pathway). Addition of ascorbic acid and BHA reduced the formation of hexanal, heptanal, and dimethyl disulfide significantly (P,< 0.05). Generation mechanisms of pentanal seem to be different from those of hexanal and heptanal in milk. Both singlet oxygen oxidation (type II pathway) and free radicals (type I pathway) play important roles in the formation of light-induced volatiles in milk. [source] Flavor Variability and Flavor Stability of U.S.-Produced Whole Milk PowderJOURNAL OF FOOD SCIENCE, Issue 7 2009M.A. Lloyd ABSTRACT:, Flavor variability and stability of U.S.-produced whole milk powder (WMP) are important parameters for maximizing quality and global competitiveness of this commodity. This study characterized flavor and flavor stability of domestic WMP. Freshly produced (<1 mo) WMP was collected from 4 U.S. production facilities 5 times over a 1 y period. Each sample was analyzed initially and every 2 mo for sensory profile, volatiles, color, water activity, and moisture through 12 mo storage. Selected volatiles were quantified using solid phase microextraction (SPME) with gas chromatography/mass-spectrometry: dimethyl sulfide, 2-methylbutanal, 3-methylbutanal, hexanal, 2-heptanone, heptanal, 1-octen-3-ol, octanal, 3-octen-2-one, and nonanal. Multiple linear regression with backwards elimination was applied to generate equations to predict grassy and painty flavors based on selected volatiles. All WMP were between 2% and 3% moisture and 0.11 and 0.25 water activity initially. WMP varied in initial flavor profiles with varying levels of cooked, milk fat, and sweet aromatic flavors. During storage, grassy and painty flavors developed while sweet aromatic flavor intensities decreased (P,< 0.05). Painty and grassy flavors were confirmed by increased levels (P,< 0.05) of lipid oxidation products such as hexanal, heptanal, and octanal. Hexanal, 2-heptanone, 1-octen-3-ol, and nonanal concentrations were best predictors of grassy flavor (R2= 0.38,,P,< 0.0001) while hexanal, 2-methylbutanal, 3-methylbutanal, octanal, and 3-octen-2-one concentrations were best predictors of painty flavor (R2= 0.61,,P,< 0.0001). These results provide baseline information to determine specific factors that can be controlled to optimize U.S. WMP flavor and flavor stability. [source] Fat Content Influences the Color, Lipid Oxidation, and Volatiles of Irradiated Ground BeefJOURNAL OF FOOD SCIENCE, Issue 6 2009H.A. Ismail ABSTRACT:, Ground beef with 10%, 15%, or 20% fat were added with none, 0.05% ascorbic acid + 0.01%,-tocopherol, or 0.05% ascorbic acid + 0.01%,-tocopherol + 0.01% sesamol, and irradiated at 0 or 2.5 kGy. The meat samples were displayed under fluorescent light for 14 d at 4 °C. Color, lipid oxidation, volatiles, oxidation-reduction potential (ORP), and carbon monoxide (CO) production were determined during storage. Irradiation increased lipid oxidation and total volatiles of ground beef regardless of fat contents. Ascorbic acid +,-tocopherol + sesamol treatment was the most effective in reducing lipid oxidation during storage. The production of ethanol in nonirradiated ground beef increased dramatically after 7 d of storage due to microbial growth. Total aldehydes and hexanal increased drastically in irradiated control over the storage period, but hexanal increased the most by irradiation.,L*-values was decreased by irradiation, but increased in all meat regardless of fat contents as storage period increased. Irradiation reduced the redness, but fat contents had no effect on the,a*-value of ground beef. Sesamol lowered, but ascorbic acid +,-tocopherol maintained the redness of irradiated beef up to 2 wk of storage. The yellowness of meat was significantly decreased by irradiation. The reducing power of ascorbic acid +,-tocopherol lasted for 3 d, after which ORP values increased. Irradiation increased CO production regardless of fat content in ground beef. In conclusion, up to 20% fat had no effect on the quality change of irradiated ground beef if ascorbic acid +,-tocopherol was added. [source] Aroma Components of American Country HamJOURNAL OF FOOD SCIENCE, Issue 1 2008H. Song ABSTRACT:, The aroma-active compounds of American country ham were investigated by using direct solvent extraction-solvent assisted flavor evaporation (DSE-SAFE), dynamic headspace dilution analysis (DHDA), gas chromatography-olfactometry (GCO), aroma extract dilution analysis (AEDA), and gas chromatography-mass spectrometry (GC-MS). The results indicated the involvement of numerous volatile constituents in the aroma of country ham. For DHDA, 38 compounds were identified as major odorants, among them, 1-octen-3-one, 2-acetyl-1-pyrroline, 1-nonen-3-one, decanal, and (E)-2-nonenal were the most predominant, having FD-factors , 125 in all 3 hams examined, followed by 3-methylbutanal, 1-hexen-3-one, octanal, acetic acid, phenylacetaldehyde, and FuraneolÔ. For the DSE-SAFE method, the neutral/basic fraction was dominated by 1-octen-3-one, methional, guaiacol, (E)-4,5-epoxy-(E)-decenal, p-cresol as well as 3-methylbutanal, hexanal, 2-acetyl-1-pyrroline, phenylacetaldehyde, and ,-nonalactone. The acidic fraction contained mainly short-chain volatile acids (3-methylbutanoic acid, butanoic acid, hexanoic acid, and acetic acid) and Maillard reaction products (for example, 4-hydroxy-2,5-dimethyl-3(2H)-furanone). The above compounds identified were derived from lipid oxidation, amino acid degradation, and Maillard/Strecker and associated reactions. Both methods revealed the same nature of the aroma components of American country ham. [source] Flavor Fade in Peanuts During Short-term StorageJOURNAL OF FOOD SCIENCE, Issue 3 2006Jodi E Williams ABSTRACT: Flavor characteristics of roasted peanuts over short-term storage were explored through sensory and chemical analyses. The volatiles from freshly roasted peanuts were evaluated over short-time (21 d) storage using gas chromatography, chemosensory techniques, and a sensory panel to quantify and identify pyrazines and hexanal over a 21-d storage period. A significant decrease (P < 0.05) was noted in 2,3-diethylpyrazine, 2-methoxypyrazine, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, and 2,3,5-trimethylpyrazine concentrations over a 21-d period. No significant difference (P > 0.05) was noted in the 2-methylpyrazine and 2-ethylpyrazine concentrations. The hexanal concentration significantly increased (P < 0.05) over the 21-d period. The peroxide values and sensory analysis agreed with these results. A significant increase (P < 0.05) in peroxide value was seen at days 14 and 21, and a significant decrease (P < 0.05) in fresh roasted peanuty flavor from day 0 to 21 and significant increases (P < 0.05) in painty, cardboardy, and bitter flavors from day 7 to 21 with the sensory analysis. The electronic nose successfully separated day 0 and 21 samples from day 7 and 14 samples, which were also separated but with some overlap. [source] Reduction of Levels of Volatile Components Associated with the "Beany" Flavor in Soymilk by Lactobacilli and StreptococciJOURNAL OF FOOD SCIENCE, Issue 3 2005Trenna D. Blagden ABSTRACT: Methanol, acetaldehyde, ethanol, and hexanal were the 4 major volatiles detected in unfermented soymilk. Eight of the cultures of lactobacilli or streptococci completely eliminated hexanal in the soymilk during fermentation. However, there were considerable variations in the effects of the cultures on the other 3 compounds. All 8 caused significant reduction in levels of methanol. Streptococcus thermophilus OSU-2 was the only culture that significantly lowered the concentration of ethanol in the soymilk. All except Lactobacillus acidophilus C19 and Lactobacillus casei E5 significantly lowered the level of acetaldehyde. Of the cultures tested, L. acidophilus L1 offered the best potential for producing fermented soymilk with an improved volatile profile. [source] Relating Descriptive Sensory Analysis to Gas Chromatography/Olfactometry Ratings of Fresh Strawberries Using Partial Least Squares RegressionJOURNAL OF FOOD SCIENCE, Issue 7 2004K.F. Schulbach ABSTRACT: Sensory properties of 5 strawberry varieties were related to gas chromatography/olfactometry (GC/ O) analysis using partial least squares regression (PLS). The sour and green sensory aspects were strongly associated with titratable acidity, hexanal, and E-2 hexenal. The caramel/sweet character was differentiated from the strawberry/fruity character by its stronger association with Furaneol, which had a high score in the 2nd PLS dimension. The sensory scores for peach and the GC/O ratings for the peach-like lactones were also associated. The fruity sensory scores and the floral sensory scores were not well correlated with compounds having fruity or floral character. This lack of relationship could partially be explained by covariance among the sensory ratings for the samples. [source] Antioxidant Properties of Far Infrared-treated Rice Hull Extract in Irradiated Raw and Cooked Turkey BreastJOURNAL OF FOOD SCIENCE, Issue 6 2003S.-C. Lee ABSTRACT: The antioxidant effect of far infrared-treated rice hull (FRH) extracts in irradiated turkey breast meat was compared with that of sesamol and rosemary oleoresin. The FRH extracts significantly decreased thiobarbituric acid-reactive substances values and volatile aldehydes (hexanal, pentanal, and propanal) and was effective in reducing the production of dimethyl disulfide responsible for irradiation off-odor in irradiated raw and cooked turkey meat during aerobic storage. The antioxidant activity of FRH extracts (0.1%, wt/wt) was as effective as that of rosemary oleoresin (0.1%). However, the addition of FRH extracts increased red and yellow color intensities and produced an off-odor characteristic to rice hull in raw and cooked meat. [source] Inhibition of Oxidative Flavor Changes in Meat by ,-Tocopherol in Combination with Sodium TripolyphosphateJOURNAL OF FOOD SCIENCE, Issue 4 2002S. Vara-ubol ABSTRACT The effects of ,-tocopherol at 0.03%, sodium tripolyphosphate (STP) at 0.3%, alone and in combination, and STP alone at 0.5% on hexanal and sensory attributes of refrigerated cooked ground turkey or pork, with and without salt (1% NaCl), were studied. For turkey, a combination of ,-tocopherol with 0.3% STP was nearly as effective as 0.5% STP. Turkey and meaty flavor of samples from these 2 treatments did not decline; hexanal content and staleness scores remained low throughout storage. Slick mouthfeel and metallic aftertaste were less for turkey with the antioxidant combination than with 0.5% STP. In pork, STP alone at 0.3% adequately prevented oxidative flavor changes. ,-Tocopherol, when used with STP, provided no additional effect. [source] Headspace Evaluation of Methanethiol and Dimethyl Trisulfide in Aqueous Solutions of Soy-protein IsolatesJOURNAL OF FOOD SCIENCE, Issue 5 2000W.L. Boatright ABSTRACT Volatile compounds from 2 samples of aqueous soy-protein isolates (SPI) (7%) were analyzed using both static and dynamic headspace methods. Based on dynamic headspace analyses, the most powerful odorants were (1) dimethyl trisulfide, (2) methanethiol, (3) hexanal, (4) an unidentified charred, sweaty feet-like odor, (5) 2-pentyl furan, (6) 2,3-butadione, and (7) an unknown burnt-like odor. The most powerful odorants by static headspace analyses were (1) dimethyl trisulfide, (2) hexanal, (3) methanethiol, and (4) 2-pentyl furan. Using deuterium labeled DMTS as an internal standard, DMTS was quantified at 60.1 and 45.5 ppb in the SPIs. This corresponds to odor values of 6014 and 4554, respectively. Using a cool, on-column technique, direct injection of concentrated-headspace volatiles and solvent-recovered volatiles with an internal standard of d6 -DMTS detected both methanethiol and DMTS at similar levels as with the traditional injection methods. [source] |