Heterozygous Deletions (heterozygous + deletion)

Distribution by Scientific Domains


Selected Abstracts


Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle

ACTA PHYSIOLOGICA, Issue 4 2003
J. F. C. Glatz
Abstract The intracellular transport of long-chain fatty acids in muscle cells is facilitated to a great extent by heart-type cytoplasmic fatty acid-binding protein (H-FABP). By virtue of the marked affinity of this 14.5-kDa protein for fatty acids, H-FABP dramatically increases their concentration in the aqueous cytoplasm by non-covalent binding, thereby facilitating both the transition of fatty acids from membranes to the aqueous space and their diffusional transport from membranes (e.g. sarcolemma) to other cellular compartments (e.g. mitochondria). Striking features are the relative abundance of H-FABP in muscle, especially in oxidative muscle fibres, and the modulation of the muscular H-FABP content in concert with the modulation of other proteins and enzymes involved in fatty acid handling and utilization. Newer studies with mice carrying a homozygous or heterozygous deletion of the H-FABP gene show that, in comparison with wild-type mice, hindlimb muscles from heterozygous animals have a markedly lowered (,66%) H-FABP content but unaltered palmitate uptake rate, while in hindlimb muscles from homozygous animals (no H-FABP present) palmitate uptake was reduced by 45%. These findings indicate that H-FABP is present in relative excess and plays a substantial, but merely permissive role in fatty acid uptake by skeletal muscles. [source]


Myoclonus-dystonia: significance of large SGCE deletions,,

HUMAN MUTATION, Issue 2 2008
A. Grünewald
Abstract Myoclonus-dystonia (M-D) is an autosomal-dominant movement disorder caused by mutations in SGCE. We investigated the frequency and type of SGCE mutations with emphasis on gene dosage alterations and explored the associated phenotypes. We tested 35 M-D index patients by multiplex ligation-dependent probe amplification (MLPA) and genomic sequencing. Mutations were found in 26% (9/35) of the cases, all but three with definite M-D. Two heterozygous deletions of the entire SGCE gene and flanking DNA and a heterozygous deletion of exon 2 only were detected, accounting for 33% (3/9) of the mutations found. Both large deletions contained COL1A2 and were additionally associated with joint problems. Further, we discovered one novel small deletion (c.771_772delAT, p.C258X) and four recurrent point mutations (c.289C>T, p.R97X; c.304C>T, p.R102X; c.709C>T, p.R237X; c.1114C>T, p.R372X). A Medline search identified 22 articles on SGCE mutational screening. Sixty-four unrelated M-D patients were described with 41 different mutations. No genotype,phenotype association was found, except in patients with deletions encompassing additional genes. In conclusion, a rigorous clinical preselection of patients and careful accounting for non-motor signs should precede mutational tests. Gene dosage studies should be included in routine SGCE genetic testing. © 2007 Wiley-Liss, Inc. [source]


Sarcoglycanopathies and the risk of undetected deletion alleles in diagnosis,,

HUMAN MUTATION, Issue 1 2005
Stefan J. White
Abstract We have designed Multiplex Amplifiable Probe Hybridization (MAPH) probes for 28 exons of the sarcoglycan genes SGCA, SGCB, SGCG, and SGCD. The set was used to screen DNA from limb-girdle muscular dystrophy (LGMD) patients for the presence of pathogenic deletion or duplication mutations. An unexpected heterozygous deletion of SGCG exon 7 was detected in a patient from a consanguineous family in which a known c.525delT mutation segregates. The exon 7 deletion was inherited from the father, who was part of the consanguineous c.525delT branch of the family but who did not carry the c.525delT mutation. A similar, homozygous deletion had been identified in two unrelated LGMD patients from southern Italy. The deletion breakpoints were mapped, isolated, and sequenced, and were identical in all cases. Haplotype analysis showed the same alleles segregating with the mutation in all three patients, suggesting a common ancestor. Exonic deletions in sarcoglycanopathies appear to be rare events. However, we recommend screening for exonic deletions/duplications in patients where a mutation has not been identified in both alleles, as well as in seemingly homozygous cases where segregation of the mutations can not be confirmed in the parents. © 2005 Wiley-Liss, Inc. [source]


Recessive congenital methaemoglobinaemia: functional characterization of the novel D239G mutation in the NADH-binding lobe of cytochrome b5 reductase

BRITISH JOURNAL OF HAEMATOLOGY, Issue 6 2005
M. J. Percy
Summary Type I recessive congenital methaemoglobinaemia (RCM), caused by the reduced form of nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase (cytb5r) deficiency, manifests clinically as cyanosis without neurological dysfunction. Two mutations, E255- and G291D, have been identified in the NADH-binding lobe of cytb5r in previously reported patients, and we have detected a further novel mutation, D239G, in this lobe in two unrelated Irish families. Although one family belongs to the genetically isolated Traveller Community, which separated from the general Irish population during the 1845,48 famine, the D239G mutation was present on the same haplotype in both families. Three known cytb5r mutations were also identified, including the R159- mutation, which causes loss of the entire NADH-binding lobe and had previously been reported in an individual with type II RCM. Characterization of the three NADH-binding lobe mutants using a heterologous expression system revealed that all three variants retained stoichiometric levels of flavin adenine dinucleotide with spectroscopic and thermodynamic properties comparable with those of native cytb5r. In contrast to the E255- and G291D variants, the novel D239G mutation had no adverse impact on protein thermostability. The D239G mutation perturbed substrate binding, causing both decreased specificity for NADH and increased specificity for NADPH. Thus cytb5r deficient patients who are heterozygous for an NADH-binding lobe mutation can exhibit the clinically less severe type I phenotype, even in association with heterozygous deletion of the NADH-binding lobe. [source]


Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1 - SLC12A1 fusion gene

GENES, CHROMOSOMES AND CANCER, Issue 6 2010
Linda B. C. Bralten
We performed genotyping and exon-level expression profiling on 21 glioblastomas (GBMs) and 19 oligodendrogliomas (ODs) to identify genes involved in glioma initiation and/or progression. Low-copy number amplifications (2.5 < n < 7) and high-copy number amplifications (n > 7) were more frequently observed in GBMs; ODs generally have more heterozygous deletions per tumor. Four high-copy amplicons were identified in more than one sample and resulted in overexpression of the known oncogenes EGFR, MDM2, and CDK4. In the fourth amplicon, RBBP5, a member of the RB pathway, may act as a novel oncogene in GBMs. Not all hCNAs contain known genes, which may suggest that other transcriptional and/or regulatory elements are the target for amplification. Regions with most frequent allelic loss, both in ODs and GBMs, resulted in a reduced expression of known tumor suppressor genes. We identified a homozygous deletion spanning the Pragmin gene in one sample, but direct sequencing of all coding exons in 20 other glioma samples failed to detect additional genetic changes. Finally, we screened for fusion genes by identifying aberrant 5,-3, expression of genes that lie over regions of a copy number change. A fusion gene between exon 11 of LEO1 and exon 10 of SLC12A1 was identified. Our data show that integrated genomic profiling can identify genes involved in tumor initiation, and/or progression and can be used as an approach to identify novel fusion genes. © 2010 Wiley-Liss, Inc. [source]


Myoclonus-dystonia: significance of large SGCE deletions,,

HUMAN MUTATION, Issue 2 2008
A. Grünewald
Abstract Myoclonus-dystonia (M-D) is an autosomal-dominant movement disorder caused by mutations in SGCE. We investigated the frequency and type of SGCE mutations with emphasis on gene dosage alterations and explored the associated phenotypes. We tested 35 M-D index patients by multiplex ligation-dependent probe amplification (MLPA) and genomic sequencing. Mutations were found in 26% (9/35) of the cases, all but three with definite M-D. Two heterozygous deletions of the entire SGCE gene and flanking DNA and a heterozygous deletion of exon 2 only were detected, accounting for 33% (3/9) of the mutations found. Both large deletions contained COL1A2 and were additionally associated with joint problems. Further, we discovered one novel small deletion (c.771_772delAT, p.C258X) and four recurrent point mutations (c.289C>T, p.R97X; c.304C>T, p.R102X; c.709C>T, p.R237X; c.1114C>T, p.R372X). A Medline search identified 22 articles on SGCE mutational screening. Sixty-four unrelated M-D patients were described with 41 different mutations. No genotype,phenotype association was found, except in patients with deletions encompassing additional genes. In conclusion, a rigorous clinical preselection of patients and careful accounting for non-motor signs should precede mutational tests. Gene dosage studies should be included in routine SGCE genetic testing. © 2007 Wiley-Liss, Inc. [source]


Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLC1,

HUMAN MUTATION, Issue 6 2006
P. K. Ilja Boor
Abstract Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an autosomal recessive cerebral white matter disorder in children. This disease is histopathologically characterized by myelin splitting and intramyelinic vacuole formation. MLC is caused by mutations in the gene MLC1, which encodes a novel protein, MLC1. Since the first report, 50 mutations in this gene have been found. Mutations occur throughout the entire coding region and include all different types: 11 splice-site mutations; one nonsense mutation; 24 missense mutations; and 14 deletions and insertions. Until now, six polymorphisms within the coding sequence of MLC1 had been reported. In about 20% of the patients with a typical clinical and MRI picture, no mutations in the MLC1 gene are found. Several of the families, in which no mutations are found, also do not show linkage with the MLC1 locus, which suggests a second gene involved in MLC. The absence of mutations may also be the consequence of performing standard mutation analysis that can miss heterozygous deletions, mutations in the promoter, 3, and 5, untranslated regions (UTRs), and intron mutations, which may influence the amino acid composition of the end product. In this work we describe 13 novel mutations, including those found with extended mutation analysis on MLC patients. This study shows that extended mutation analysis is a valuable tool to identify at least some of the missing mutations. Therefore, we suggest extended mutation analysis for the MLC1 gene, if no mutations are found during standard analysis. Hum Mutat 27(6), 505,512, 2006. © 2006 Wiley-Liss, Inc. [source]


The detection of large deletions or duplications in genomic DNA,

HUMAN MUTATION, Issue 5 2002
J.A.L. Armour
Abstract While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Hum Mutat 20:325,337, 2002. © 2002 Wiley-Liss, Inc. [source]


Evaluation of FOXP2 as an autism susceptibility gene

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 5 2002
Thomas H. Wassink
Abstract A mutation in the gene FOXP2 was recently identified as being responsible for a complicated speech and language phenotype in a single large extended pedigree. This gene is of interest to autism because it lies in one of the most consistently linked autism chromosomal regions of interest. We therefore tested this gene for its involvement in autism in a large sample of autism families. We completely sequenced the exon containing the mutation, screened the remaining coding sequence using SSCP technology, and identified and genotyped two novel intronic tetranucleotide repeat polymorphisms that were then analyzed for evidence of linkage and linkage disequilibrium (LD). We identified two families in which heterozygous deletions of a small number of glutamines in a long poly-glutamine stretch were found in one parent and the autistic probands; no other non-conservative coding sequence changes were identified. Linkage and LD analyses were performed in 75 affected sibling pair families and in two subgroups of this sample defined by the presence/absence of severe language impairment. One allele appeared to have an opposite pattern of transmission in the language based subgroups, but otherwise the linkage and LD analyses were negative. We conclude that FOXP2 is unlikely to contribute significantly to autism susceptibility. © 2002 Wiley-Liss, Inc. [source]


Large Genomic Mutations within the ATM Gene Detected by MLPA, Including a Duplication of 41 kb from Exon 4 to 20

ANNALS OF HUMAN GENETICS, Issue 1 2008
Simona Cavalieri
Summary Mutation detection remains problematic for large genes, primarily because PCR-based methodology fails to detect heterozygous deletions and any duplication. In the ATM gene only a handful of multi-exon deletions have been described to date, and this type of mutation has been considered rare. To address this issue we tested a new MLPA (Multiplex Ligation Probe Amplification) kit that covers 33 of the 66 ATM exons, using for controls two previously characterized genomic deletions in addition to three A-T patients, taken from a survey of nine, who had missing four mutations unidentified after conventional mutation screening. We identified for the first time: 1) a ,41 kb genomic duplication spanning exons 4,20 (c.-30_2816dup41kb)(a.k.a., ATM dup 41 kb); 2) a novel genomic deletion including exon 31, and 3) in hemizygosis a point mutation in the non-deleted exon 31. In this study we extended mutation detection to nine new Italian A-T patients, using a combined approach of haplotype analysis, DHPLC and MLPA. Overall we achieved a mutation detection rate of >97%, and can now define a spectrum of ATM mutations based on twenty-one consecutive Italian families with A-T. [source]