Heterozygous Condition (heterozygous + condition)

Distribution by Scientific Domains


Selected Abstracts


The purge of genetic load through restricted panmixia in a Drosophila experiment

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 9 2010
V. ÁVILA
Abstract Using Drosophila melanogaster, we explore the consequences of restricted panmixia (RP) on the genetic load caused by segregating deleterious recessive alleles in a population where females mate a full sib with probability about ˝ and mate randomly otherwise. We find that this breeding structure purges roughly half the load concealed in heterozygous condition. Furthermore, fitness did not increase after panmixia was restored, implying that, during RP, the excess of expressed load induced by inbreeding had also been efficiently purged. We find evidences for adaptation to laboratory conditions and to specific selective pressures imposed by the RP protocol. We discuss some of the consequences of these results, both for the evolution of population breeding structures and for the design of conservation programmes. [source]


Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat

PLANT BREEDING, Issue 6 2006
B. K. Das
Abstract The stem rust resistance gene Sr31, transferred from rye (Secale cereale) into wheat (Triticum aestivum L.) imparts resistance to all the virulent pathotypes of stem rust (Puccinia graminis f. sp. tritici) found in India. Wheat genotypes including carriers and non-carriers of the Sr31 gene were analysed using arbitrary primed polymerase chain reaction (AP-PCR). AP-PCR markers viz. SS30.2580(H) associated with the Sr31 gene and SS26.11100 associated with the allele for susceptibility were identified. Linkage between the markers and phenotypes was confirmed by analysing an F2 population obtained from a cross between a resistant and a susceptible genotype. The markers were tightly linked to the respective alleles. Both the AP-PCR markers were converted into sequence characterized amplified region (SCAR) markers, viz. SCSS30.2576 and SCSS26.11100 respectively. The markers were validated in two more segregating populations and 49 wheat genotypes. Using both markers it was possible to distinguish the homozygous from the heterozygous carriers of the Sr31 gene in the F2 generation. The markers developed in this study can be used for pyramiding of the Sr31 gene with other rust resistance genes and in marker-assisted selection. [source]


First report of prenatal diagnosis of genetic congenital deafness in a routine prenatal genetic test

PRENATAL DIAGNOSIS, Issue 13 2003
M. L. Santoro
Abstract Objective We aimed to screen for connexin26 gene (GJB2) mutations associated with autosomal recessive non-syndromic neurosensory deafness (NSRD) in a general risk population. Methods Screening for the most common connexin26 gene mutations was offered to all women undergoing a second-trimester amniocentesis for fetal karyotype analysis in our Center. After rapid DNA extraction from amniotic fluid, PCR amplification was performed and products analysed to detect mutations of GJB2 gene by a sequencing technique. In particular, we searched for the 20 most frequently reported mutations (out of the approximately 90 so far described) and for which there are commercially available tests. Results From a total of 4819 consecutive amniotic fluids examined, the following five different heterozygous mutations were detected: 35delG in 80 cases, 167delT in 3 cases and 1 occurrence of each of the following mutations: M34T, 35insG and W77R. From these data, a prevalence of 1 : 56 (1.78%) for the heterozygous condition can be estimated in the Mediterranean general risk population. The striking predominance of 35delG mutation is confirmed. In addition, we detected a homozygous 35delG mutation condition in a foetus of no risk parents. In this case, the early diagnosis permitted prompt application of an acoustic prosthesis allowing for cochlear implantation in due time, with significant improvement of the prognosis. Conclusions In a general risk population, a carrier status for congenital deafness can be observed in 1 : 56 (1.78%) amniotic fluids; this is mostly due to the presence of a 35delG mutation of the connexin26 gene. Occasional identification of homozygous states, although rare, allows the best therapeutic approach. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus)

ANIMAL GENETICS, Issue 5 2006
L. Fontanesi
Summary We sequenced almost the complete coding region of the MC1R gene in several domestic rabbits (Oryctolagus cuniculus) and identified four alleles: two wild-type alleles differing by two synonymous single nucleotide polymorphisms (c.333A>G;c.555T>C), one allele with a 30-nucleotide in-frame deletion (c.304_333del30) and one allele with a 6-nucleotide in-frame deletion (c.280_285del6). A polymerase chain reaction-based protocol was used to distinguish the wild-type alleles from the other two alleles in 263 rabbits belonging to 37 breeds or strains. All red/fawn/yellow rabbits were homozygous for the c.304_333del30 allele. This allele represents the recessive e allele at the extension locus identified through pioneering genetic studies in this species. All Californian, Checkered, Giant White and New Zealand White rabbits were homozygous for allele c.280_285del6, which was also observed in the heterozygous condition in a few other breeds. Black coat colour is part of the standard colour in Californian and Checkered breeds, in contrast to the two albino breeds, Giant White and New Zealand White. Following the nomenclature established for the rabbit extension locus, the c.280_285del6 allele, which is dominant over c.304_333del30, may be allele ED or allele ES. [source]


Myocilin gene implicated in primary congenital glaucoma

CLINICAL GENETICS, Issue 4 2005
K Kaur
Primary congenital glaucoma (PCG) has been associated with CYP1B1 gene (2p21), with a predominantly autosomal recessive mode of inheritance. Our earlier studies attributed CYP1B1 mutations to only 40% of Indian PCG cases. In this study, we included 72 such PCG cases where CYP1B1 mutations were detected in only 12 patients in heterozygous condition, implying involvement of other gene(s). On screening these patients for mutations in myocilin (MYOC), another glaucoma-associated gene, using denaturing high-performance liquid chromatography followed by sequencing, we identified a patient who was double heterozygous at CYP1B1 (c.1103G>A; Arg368His) and MYOC (c.144G>T; Gln48His) loci, suggesting a digenic mode of inheritance of PCG. In addition, we identified the same MYOC mutation, implicated for primary open angle glaucoma, in three additional PCG patients who did not harbor any mutation in CYP1B1. These observations suggest a possible role of MYOC in PCG, which might be mediated via digenic interaction with CYP1B1 and/or an yet unidentified locus associated with the disease. [source]