Heterostructures

Distribution by Scientific Domains

Kinds of Heterostructures

  • algan/gan heterostructure
  • semiconductor heterostructure


  • Selected Abstracts


    General Strategy for a Large-Scale Fabric with Branched Nanofiber,Nanorod Hierarchical Heterostructure: Controllable Synthesis and Applications

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 37 2010
    Meng Shang
    Abstract The preparation and characterization of a branched nanofiber,nanorod hierarchical heterostructure fabric (TiO2/NiO, TiO2/ZnO, and TiO2/SnO2) are described. The nanomaterial was synthesized on a large scale by an inexpensive, generalizable, facile, and controllable approach by combining the electrospinning technique with a hydrothermal method. The controllable formation process and factors (assistance by hexamethylenetetramine and metal oxide nuclei) influencing the morphology of the branched hierarchical heterostructure are discussed. In addition, photocurrent and photocatalytic studies suggest that the branched hierarchical heterostructure fabric shows higher mobility of charge carriers and enhanced photocatalytic activity relative to a bare TiO2 nanofibrous mat and other heterostructures under irradiation by light. This work demonstrates the possibility of growing branched heterostructure fabrics of various uniform, one-dimensional, functional metal oxide nanorods on a TiO2 nanofibrous mat, which has a tunable morphology by changing the precursor. The study may open a new channel for building hierarchical heterostructure device fabrics with optical and catalytic properties, and allow the realization of a new class of nano-heterostructure devices. [source]


    Effect of Electric Field on Coulomb-Stabilized Excitons in Host/Guest Systems for Deep-Blue Electrophosphorescence

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Stephan Haneder
    Abstract Here, a study of the electric field induced quenching on the phosphorescence intensity of a deep-blue triplet emitter dispersed in different host materials is presented. The hosts are characterized by a higher triplet excitonic level with respect to the emitter, ensuring efficient energy transfer and exciton confinement, whereas they differ in the highest occupied molecular orbital (HOMO) alignment, forming type I and type II host/guest heterostructures. While the type I structure shows negligible electric field induced quenching, a quenching up to 25% for the type II at a field of 2,MV/cm is reported. A similar quenching behaviour is also reported for thin films of the pure emitter, revealing an important luminescence loss mechanism for aggregated emitter molecules. These results are interpreted by considering Coulomb stabilized excitons in the type II heterostructure and in the pure emitter, that become very sensitive to dissociation upon application of the field. These results clarify the role of external electric field quenching on the phosphorescence of triplet emitters and provide useful insights for the design of deep-blue electrophosphorescent devices with a reduced efficiency roll-off. [source]


    Giant Electric Field Tuning of Magnetic Properties in Multiferroic Ferrite/Ferroelectric Heterostructures

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
    Ming Liu
    Abstract Multiferroic heterostructures of Fe3O4/PZT (lead zirconium titanate), Fe3O4/PMN-PT (lead magnesium niobate-lead titanate) and Fe3O4/PZN-PT (lead zinc niobate-lead titanate) are prepared by spin-spray depositing Fe3O4 ferrite film on ferroelectric PZT, PMN-PT and PZN-PT substrates at a low temperature of 90,°C. Strong magnetoelectric coupling (ME) and giant microwave tunability are demonstrated by a electrostatic field induced magnetic anisotropic field change in these heterostructures. A high electrostatically tunable ferromagnetic resonance (FMR) field shift up to 600,Oe, corresponding to a large microwave ME coefficient of 67,Oe cm kV,1, is observed in Fe3O4/PMN-PT heterostructures. A record-high electrostatically tunable FMR field range of 860 Oe with a linewidth of 330,380,Oe is demonstrated in Fe3O4/PZN-PT heterostructure, corresponding to a ME coefficient of 108,Oe cm kV,1. Static ME interaction is also investigated and a maximum electric field induced squareness ratio change of 40% is observed in Fe3O4/PZN-PT. In addition, a new concept that the external magnetic orientation and the electric field cooperate to determine microwave magnetic tunability is brought forth to significantly enhance the microwave tunable range up to 1000,Oe. These low temperature synthesized multiferroic heterostructures exhibiting giant electrostatically induced tunable magnetic resonance field at microwave frequencies provide great opportunities for electrostatically tunable microwave multiferroic devices. [source]


    Direct Laser Writing of Nanoscale Light-Emitting Diodes

    ADVANCED MATERIALS, Issue 29 2010
    Oleg Makarovsky
    Nanoscale light-emitting diodes (nanoLEDs) and arrays of nanoLEDs produced by laser controlled diffusion of interstitial manganese (Mni) donor ions out of the ferromagnetic semiconductor (GaMn)As towards the underlying layers of a quantum well heterostructure. The approach represents an alternative to deep etching for the creation of nanoscale current channels and nanoLEDs. [source]


    Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate,Lead Titanate (PZN-PT) Heterostructures

    ADVANCED MATERIALS, Issue 46 2009
    Jing Lou
    A novel multiferroic heterostructure consisting of a FeGaB thin film and a PZN-PT single crystal slab shows giant tunability of the ferromagnetic resonance (FMR) frequency of the heterostructure by electric field (see figure). The overall electric-field-induced FMR frequency change of 5.82 GHz is the largest reported so far. FeGaB/PZN-PT multiferroic heterostructures are promising candidates for wide-band electrostatically tunable microwave devices. [source]


    Hybrid Inorganic/Organic Semiconductor Heterostructures with Efficient Non-Radiative Energy Transfer,

    ADVANCED MATERIALS, Issue 3 2006
    G. Heliotis
    An inorganic/organic hybrid semiconductor heterostructure is reported, in which an InGaN quantum well is non-radiatively coupled to a semiconducting polymer overlayer (see Figure). This architecture has the potential to take advantage of the complementary attributes of the two types of semiconductor that it contains, and may lead to devices with highly efficient emission across the entire visible spectrum. [source]


    Inversion domain boundaries in GaN studied by X-ray microprobe

    PHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 1-2 2010
    Gema Martínez-Criado
    Abstract In this study, we report on the application of synchrotron spectro-microscopic techniques to the examination of inversion domain boundaries formed intentionally in a GaN-based lateral polarity heterostructure. Using X-ray sub-microbeams, no evidence of field-driven electrodiffusion effects has been observed on spatially separated inversion domain boundaries. In addition, XANES data around the Ga K-edge strongly supported hexagonal Ga site configurations, suggesting high local order reconstruction. Based on inner-shell excited luminescence on the micrometer scale, the uniform spectral distribution of the radiative centers was discussed. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    ZnO-based photodetector with internal photocurrent gain

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2010
    L. A. Kosyachenko
    Abstract The photoresponsive structures prepared by magnetron sputtering of ZnO on p-Si substrates followed by vacuum evaporation of semitransparent Ni film on ZnO surface are investigated. The obtained Ni/n-ZnO/p-Si structures show high sensitivity that sharply increases with increase in applied voltage. Under a bias voltage of 5,V, the responsivities at ,,=,390,nm and ,,=,850,nm were equal to 210 and 110,A/W, which correspond to quantum efficiencies of 655 and 165, respectively. It is assumed that the observed strong response is attributed to internal gain in the Ni/n-ZnO/p-Si phototransistor structure containing Ni/n-ZnO Schottky contact as the emitter junction and n-ZnO/p-Si heterostructure as the collector junction. The response time of the device is ,10,7,s. Alternative mechanisms of photocurrent multiplication in such structures are also discussed. [source]


    Soft X-ray emission spectroscopy of low-dimensional SiO2/Si interfaces after Si+ ion implantation and ion beam mixing

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 3 2010
    D. A. Zatsepin
    Abstract An X-ray Si L2,3 -emission spectroscopy study of a SiO2/n-Si heterostructure containing a thin oxide layer of d,=,20,nm thickness implanted by Si+ ions with an energy 12,keV is reported. The maximum concentration of implanted Si+ ions is located close to the SiO2,Si interface at a depth of 18,nm leading to an ion-beam mixed SiO2/Si interface layer in this region, consisting of a non-stoichiometric SiOx matrix. The possible mechanisms of these processes are discussed by atomic collision cascades (knocking-off and knocking-on processes) during ion implantation, associated by partial phase separation into silicon precipitates and SiO2. [source]


    Strain relaxation in AlN/GaN heterostructures grown by molecular beam epitaxy

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2008
    G. P. Dimitrakopulos
    Abstract The strain distribution and defects in a graded AlN/GaN heterostructure comprising AlN layers from 3 nm up to 100 nm grown by plasma-assisted MBE were studied using transmission electron microscopy techniques. Gradual strain relaxation was observed as well as strain partitioning between the GaN spacers and the thicker AlN layers. Elastic strain is retained even in the thicker layers of the heterostructure. Extensive introduction of threading and misfit dislocations is observed at and above the 7 nm AlN layer. The threading dislocations adopt inclined zig-zag line directions thus contributing to the relief of alternating compressive-tensile elastic strain across the the layers of the heterostructure. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Performance of high-power III-nitride light emitting diodes

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2008
    G. Chen
    Abstract The performance of III-nitride based high-power light emitting diodes (LEDs) is reviewed. Direct color high-power LEDs with 1 × 1 mm2 chip size in commercial LUXEON® Rebel packages are shown to exhibit external quantum efficiencies at a drive current of 350 mA ranging from ,60% at a peak wavelength of ,420 nm to ,27% at ,525 nm. The short wavelength blue LED emits ,615 mW at 350 mA and >2 W at 1.5 A. The green LED emits ,110 lm at 350 mA and ,270 lm at 1.5 A. Phosphor-conversion white LEDs (1 × 1 mm2 chip size) are demonstrated that emit ,126 lm of white light when driven at 350 mA and 381 lm when driven at 1.5 A (Correlated Color Temperature, CCT , 4700 K). In a similar LED that employs a double heterostructure (DH) insign instead of a multi-quantum well (MQW) active region, the luminous flux increases to 435 lm (CCT , 5000 K) at 1.5 A drive current. Also discussed are experimental techniques that enable the separation of internal quantum efficiency and extraction efficiency. One technique derives the internal quantum efficiency from temperature and excitation-dependent photoluminescence measurements. A second technique relies on variable-temperature electroluminescence measurements and enables the estimation of the extraction efficiency. Both techniques are shown to yield consistent results and indicate that the internal quantum efficiency of short wavelength blue (, , 420 nm) high-power LEDs is as high as 71% even at a drive current of 350 mA. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Dispersive properties of photonic crystal waveguide resonators

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2007
    T. Sünner
    Abstract We have investigated the group delay and the dispersion of light propagating through photonic crystal (PhC) resonators defined in 240 nm thick GaAs membranes. The design of the resonators is based on a PhC heterostructure, which combines waveguide sections with different lattice constants along a PhC waveguide. The measurements were performed by detecting the phase shift of a microwave signal which was modulated onto the light of a tunable laser source. The group delay was found to increase linearly with the quality factor of the resonator, in good agreement with the prediction of a model where the PhC resonator is replaced by an equivalent Fabry,Perot resonator. An alternative analysis of the measurements was performed using a Hilbert transform approach. A maximum group delay of 132 ps was observed for a resonator with a quality factor of 82000. The overall length of this resonator was 10.4 ,m, resulting in a propagation speed of 7.88 × 104 m/s (c/3800). The maximum dispersion of the resonator was around 1.7 ns/nm, which is equivalent to 100 km of standard optical fiber. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    X-ray diffraction reciprocal lattice space mapping of a -plane AlGaN on GaN

    PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 7 2006
    Michinobu Tsuda
    Abstract In this study, the anisotropic strain in a -plane AlGaN on GaN was investigated by X-ray diffraction (XRD) analysis using AlGaN/GaN heterostructure grown on r -plane sapphire. An a -plane GaN layer is compressively strained, particularly in the m -axis direction. According to XRD reciprocal lattice space mapping, the AlGaN layer was strained under tensile stress and grown almost coherently to the underlying GaN layer. The tensile stress in the AlGaN layer in the c -axis direction is approximately 1.7 times larger than that in the m -axis direction. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Spin-polarized charge transport through ionic clusters of magnetic oxides

    PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2006
    G. A. Gehring
    Abstract We analyze the spin-controlled charge transfer through a heterostructure consisting of one octahedral and one tetrahedral iron,oxygen ionic clusters, which are site-coupled, sharing an oxygen ion. A number of charge carriers can be manipulated by valence-uncompensated doping. The electron-energy structure of the clusters and that of the heterostructure are found on the basis of the Anderson model. Current,voltage (I,V ) characteristics, derived from the Landauer-like formula, turn out to be highly sensitive to the position of the Fermi level. We also calculated the magnetoresistance for the heterostructure with different orientations of the magnetic field. The result confirmed the empirical data for Ca:YIG, which indicate strong anisotropy of the magnetoresistance. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Positron annihilation studies of defects in Si1-xGex/SOI heterostructures

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 11 2009
    A. Calloni
    Abstract The strain of a SiGe alloy epitaxially grown on Si can be released by heating at 750°C. However the strain relaxation is accompanied by the generation of threading dislocations and associated point defects. The attempted remedy is to let SiGe grow on a very thin Si substrate on top of a SOI heterostructure, with the purpose of concentrating the defects at the Si-SiO2 interface of the SOI substrate. A slow positron beam was used to investigate the effectiveness of the remedy. The positron diffusion length in SiGe decreases after the thermal treatment. This result shows the generation of lattice defects still occurs in the SiGe layer, in spite of the deposition on SOI. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2009
    M. Koyama
    Abstract We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Photoinduced spin waves in Fe/AlGaAs (001) heterostructure

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 8 2008
    H. B. Zhao
    Abstract Photoinduced spin waves are investigated for Fe films on AlGaAs (001) using the time resolved magneto-optical Kerr effect. We observe first and second order standing spin waves as well as uniform magnetization precession. The anisotropy fields and exchange stiffness constant are obtained from the field and azimuthal dependence of the spin wave frequencies using the Landau-Lifshitz-Gilbert equation. A comparison with spin wave resonance measurements reveals a more pronounced interface effect on the low order standing spin waves in thin films. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Piezoelectric actuation of all-nitride MEMS

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2008
    K. Tonisch
    Abstract We present a MEMS technology based on (GaN/)AlGaN/GaN,heterostructures. Thereby the lower GaN layer represents the mechanical active layer, while the upper GaN and AlGaN layers supply the piezoelectrically active layers for actuation and the confinement of a 2D electron gas (at the lower interface). The 2DEG serves as back electrode for the piezoelectric actuation and as read,out, since it is modulated by the mechanical oscillation. The upper AlGaN and GaN layer both contribute to the total piezoelectric response, which was determined by piezoelectric force microscopy. The electrical field distribution throughout the heterostructure was determined by means of electroreflectance. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Fully unstrained GaN on sacrificial AlN layers by nano-heteroepitaxy

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2007
    K. Tonisch
    Abstract Usually, the fabrication of microelectromechanical systems (MEMS) requires unstrained or tensile strained active layers on a selectively removable sacrificial layer, since compressive strain causes instabilities due to buckling effects. For group III-nitride based MEMS, AlN is a promising material for sacrificial layers since it can be epitaxially overgrown and etched selectively to GaN. However, due to the larger lattice constants GaN is growing compressively strained on AlN. Nanoheteroepitaxy opens a way to yield fully unstrained, high quality epitaxial GaN layers on nanocrystalline AlN thin film by means of a 3D strain relaxation mechanism. For this purpose sputtered nanocrystalline AlN films were overgrown with single crystalline GaN and AlGaN/GaN layers by metalorganic chemical vapor deposition. The high quality of the layers is proven by an atomically flat surface and a 2D electron gas at the interface of the AlGaN/GaN heterostructure (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    XPS study of surface potential in AlGaN/GaN heterostructure with Cat-CVD SiN passivation

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2007
    N. Onojima
    Abstract AlGaN surface potentials in AlGaN/GaN heterostructures with and without SiN passivation were investigated using x-ray photoelectron spectroscopy (XPS). SiN films were formed on AlGaN surfaces by catalytic chemical vapor deposition (Cat-CVD), which has already been found to increase two-dimensional electron gas (2DEG) density. Based on a simple electrostatic analysis, the 2DEG density is expected to increase as the AlGaN surface potential decreases. This study experimentally demonstrates that a reduction in the AlGaN surface potential is actually induced by Cat-CVD SiN passivation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    A theoretical investigation of carrier and optical mode confinement in GaInNAs QWs on GaAs and InP substrates

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 2 2007
    B. Gönül
    Abstract Both carrier and optical mode confinements are the basic ingredients while designing the semiconductor quantum well lasers. The former strongly depends on the band offsets of the heterostructure and the latter is mainly associated with the difference in the refractive index between the wave guiding core and the cladding layers. It is known that refractive index strongly depends on the direct band gap of the semiconductor material and the band gap of the III-N-V semiconductor layer can be engineered by means of adding nitrogen into InGaAs. We investigate, in this work, the refractive indices and the corresponding optical confinement factors of the proposed III-N-V laser material systems on GaAs and InP substrates. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Polarization of electron spin in two barrier system based on semimagnetic semiconductors

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2006
    S. B. Lev
    Abstract The spin-dependent tunneling of electrons through a two barrier semiconductor heterostructure with a semimagnetic layer was investigated. It was shown that the resonant level splitting in the semimagnetic well under an external magnetic field allows achieving a high level of spin polarization of the current flowing through the proposed spin filter. The dependence of the polarization depth on the parameters of the sample was calculated in the two component diffusion transport model. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Lattice-matched boronphosphide (BP)/hexagonal GaN heterostructure for inhibition of dislocation penetration

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2003
    T. Udagawa
    Abstract The crystallographic feature of a metal-organic CVD grown zinc-blende BP/wurtzite-GaN heterostructure was characterized utilizing high-resolution TEM and TED techniques. On the heterostructure system, the epitaxial relationship was revealed to be (0001), ,a -axis,-GaN//(111), ,110,-BP. (111)-BP was also found to be orientated in the "double positioning" with tracing hexagonal shape of (0001)-GaN probably because of the matching in the spacings between the a -axis of GaN (a = 0.319 nm) and the {110}-planes of BP (= 0.320 nm). (111)-BP was additionally recognized to stack in the c -direction of GaN with period of just half value of the c -axis (c = 0.518 nm). In addition to the matching property, (111)-BP joined with (0001)-GaN was found to be effective for annihilation of dislocations penetrating from the underneath GaN. (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Degradation of Structural and Optical Properties of InGaN/GaN Multiple Quantum Wells with Increasing Number of Wells

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2003
    S. Pereira
    Abstract We compare the structural and spectral properties of two multi quantum wells (MQWs), grown by metal organic chemical vapour deposition under the same nominal conditions, with a different number of periods. The MQWs, each with 20% InN and containing 8 and 18 wells, respectively, grew on-axis and coherent to GaN, as revealed by X-ray diffraction reciprocal space mapping (RSM) analysis. Comparison of the asymmetrical (105) RSMs indicates an overall structural deterioration and greater well-barrier intermixing for the MQW with the larger number of wells. Moreover, the composition of the MQWs was depth-profiled by grazing incidence Rutherford backscattering spectrometry (RBS). RBS further evidences strong intermixing in the 18-well heterostructure. The deleterious effects of intermixing on the emission spectrum are revealed by low temperature photoluminescence spectroscopy. Despite similar peak emission energies (,E < 45 meV) the 8-well structure shows a more symmetric and narrow peak (FWHM , 100 meV) in comparison with that of the 18-well sample (FWHM , 170 meV). Surface analyses by atomic force and scanning electron microscopy show an increased density, size and depth of V-pit defects on the 18-well structure. These results suggest that dislocations and pitting result from a larger elastic strain energy accumulated in the thicker MQW stack and are a fundamental intermixing mechanism for InGaN/GaN MQWs. [source]


    Two-Dimensional Electron Dynamics in GaN/AlGaN Heterostructures

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2003
    S.A. Vitusevich
    Abstract This report addresses the study of two-dimensional electron gas (2DEG) transport at low and moderate electric fields. The devices under study are group-III nitride-based (AlGaN/GaN) gateless heterostructures grown on sapphire for HEMT applications. The transmission line model (TLM) patterns of different channel lengths L and the same channel width are used. We have developed a simple theoretical model to adequately describe the observed peculiarities in the I,V characteristics measured in steady-state and pulsed (10,6 s) regimes. The effect of Joule heating of a heterostructure is clearly distinguished. The thermal impedances and the channel temperature rise caused by the Joule self-heating have been extracted for the devices of different L at different values of dissipated power. [source]


    Electronic structure calculations for inhomogeneous systems: Interfaces, surfaces, and nanocontacts

    ANNALEN DER PHYSIK, Issue 8 2008
    U. Schwingenschlögl
    Abstract The article gives an introduction into the application of density functional theory (DFT) to inhomogeneous systems. To begin with, we describe the interplay of specific materials at interfaces, resulting in structure relaxation and modifications of the chemical bonding. We address interfaces between YBa2Cu3O7 and a normal metal, in order to quantify the intrinsic interface charge transfer into the superconductor. Moreover, we study the internal interfaces in a V6O13 battery cathode and the effects of ion incorporation during the charging and discharging process. The second part of the article deals with the influence of surfaces on the nearby electronic states. Here, we investigate a LaAlO3/SrTiO3 heterostructure in a thin film geometry. We particularly explain the experimental dependence of the electronic states at the heterointerface on the surface layer thickness. Afterwards, surface relaxations are studied for both the clean Ge(001) surface and for self-assembled Pt nanowires on Ge(001). In the third part, we turn to atomic and molecular contacts. We compare the properties of prototypical Al nanocontact geometries, aiming at insight into the chemical bonding and the occupation of the atomic orbitals. Finally, the local electronic structure of a benzene-1,4-dithiol molecule between two Au electrodes is discussed as an example for a molecular bridge. [source]


    General Strategy for a Large-Scale Fabric with Branched Nanofiber,Nanorod Hierarchical Heterostructure: Controllable Synthesis and Applications

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 37 2010
    Meng Shang
    Abstract The preparation and characterization of a branched nanofiber,nanorod hierarchical heterostructure fabric (TiO2/NiO, TiO2/ZnO, and TiO2/SnO2) are described. The nanomaterial was synthesized on a large scale by an inexpensive, generalizable, facile, and controllable approach by combining the electrospinning technique with a hydrothermal method. The controllable formation process and factors (assistance by hexamethylenetetramine and metal oxide nuclei) influencing the morphology of the branched hierarchical heterostructure are discussed. In addition, photocurrent and photocatalytic studies suggest that the branched hierarchical heterostructure fabric shows higher mobility of charge carriers and enhanced photocatalytic activity relative to a bare TiO2 nanofibrous mat and other heterostructures under irradiation by light. This work demonstrates the possibility of growing branched heterostructure fabrics of various uniform, one-dimensional, functional metal oxide nanorods on a TiO2 nanofibrous mat, which has a tunable morphology by changing the precursor. The study may open a new channel for building hierarchical heterostructure device fabrics with optical and catalytic properties, and allow the realization of a new class of nano-heterostructure devices. [source]


    Formation of Nickel Oxide Nanotubes with Uniform Wall Thickness by Low-Temperature Thermal Oxidation Through Understanding the Limiting Effect of Vacancy Diffusion and the Kirkendall Phenomenon

    ADVANCED FUNCTIONAL MATERIALS, Issue 19 2010
    Yi Ren
    Abstract In this work, the step-wise oxidation mechanism of nickel (Ni) nanowires is elucidated. Rapid vacancy diffusion plays a significant role at low temperatures in forming heterostructures of nickel oxide (NiO) nanotubes with Ni nanowires. Subsequent investigations of Ni nanowire oxidation at higher temperatures and faster temperature ramp rates show that it is difficult to bypass this rapid vacancy diffusion stage, which affects the formation of the final structure. Therefore, it is unlikely to form solid NiO nanowires or NiO nanotubes with uniform wall thickness through the conventional annealing/oxidation process of Ni nanowires. Instead, a step-wise oxidation process by combining low temperature oxidation with a chemical etching step is utilized to produce for the first time NiO nanotubes with uniform wall thickness from Ni nanowires. [source]


    Conjugated-Polymer-Based Lateral Heterostructures Defined by High-Resolution Photolithography

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
    Jui-Fen Chang
    Abstract Solution processing of polymer semiconductors provides a new paradigm for large-area electronics manufacturing on flexible substrates, but it also severely restricts the realization of interesting advanced device architectures, such as lateral heterostructures with defined interfaces, which are easily accessible with inorganic materials using photolithography. This is because polymer semiconductors degrade, swell, or dissolve during conventional photoresist processing. Here a versatile, high-resolution photolithographic method is demonstrated for patterning of polymer semiconductors and exemplify this with high-performance p-type and n-type field-effect transistors (FETs) in both bottom- and top-gate architectures, as well as ambipolar light-emitting field-effect transistors (LEFETs), in which the recombination zone can be pinned at a photolithographically defined lateral heterojunction between two semiconducting polymers. The technique therefore enables the realization of a broad range of novel device architectures while retaining optimum materials performance. [source]


    Effect of Electric Field on Coulomb-Stabilized Excitons in Host/Guest Systems for Deep-Blue Electrophosphorescence

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Stephan Haneder
    Abstract Here, a study of the electric field induced quenching on the phosphorescence intensity of a deep-blue triplet emitter dispersed in different host materials is presented. The hosts are characterized by a higher triplet excitonic level with respect to the emitter, ensuring efficient energy transfer and exciton confinement, whereas they differ in the highest occupied molecular orbital (HOMO) alignment, forming type I and type II host/guest heterostructures. While the type I structure shows negligible electric field induced quenching, a quenching up to 25% for the type II at a field of 2,MV/cm is reported. A similar quenching behaviour is also reported for thin films of the pure emitter, revealing an important luminescence loss mechanism for aggregated emitter molecules. These results are interpreted by considering Coulomb stabilized excitons in the type II heterostructure and in the pure emitter, that become very sensitive to dissociation upon application of the field. These results clarify the role of external electric field quenching on the phosphorescence of triplet emitters and provide useful insights for the design of deep-blue electrophosphorescent devices with a reduced efficiency roll-off. [source]