Home About us Contact | |||
Heterologous Expression (heterologous + expression)
Terms modified by Heterologous Expression Selected AbstractsHeterologous Expression of Vitreoscilla Hemoglobin (VHb) and Cultivation Conditions Affect the Alkaloid Profile of Hyoscyamus muticus Hairy RootsBIOTECHNOLOGY PROGRESS, Issue 2 2006Annika Wilhelmson Fast-growing hairy root cultures of Hyoscyamus muticus induced by Agrobacterium rhizogenes offer a potential production system for tropane alkaloids. Oxygen deficiency has been shown to limit growth and biomass accumulation of hairy roots, whereas little experimental data is available on the effect of oxygen on alkaloid production. We have investigated the effect of Vitreoscilla hemoglobin (VHb) expression and cultivation conditions on the complete alkaloid profile of H. muticus hairy roots in shake flasks and in a laboratory scale bioreactor. We optimized the growth medium composition and studied the effects of sucrose, ammonium, nitrate, and phosphate on growth and alkaloid production. Maximum biomass accumulation was achieved with the highest and maximum hyoscyamine content with the lowest sucrose concentration. The optimum nitrate concentration for growth was higher for the VHb line than the control. Neither VHb expression nor aeration improved the hyoscyamine content significantly, thus suggesting that hyoscyamine biosynthesis is not limited by oxygen availability. Interestingly, the effect of VHb expression on the alkaloid profile was slightly different from that of aeration. VHb expression did not affect the concentrations of cuscohygrine, which was increased by aeration. Therefore, the effect of VHb is probably not related only to its ability to increase the intracellular effective oxygen concentration. [source] Insights into Multienzyme Docking in Hybrid PKS,NRPS Megasynthetases Revealed by Heterologous Expression and Genetic EngineeringCHEMBIOCHEM, Issue 8 2010Yanyan Li A critical test: We have used Red/ET recombination in a heterologous expression vector to site-specifically modify the pathway to the myxobacterial metabolite myxothiazol. Our mutagenesis results strengthen an existing model for interpolypeptide "docking" during biosynthesis of such hybrid polyketide,nonribosomal peptide natural products. [source] Cloning and Heterologous Expression of the Aranciamycin Biosynthetic Gene Cluster Revealed a New Flexible GlycosyltransferaseCHEMBIOCHEM, Issue 6 2007Andriy Luzhetskyy Dr. Add sugar, Cloning and heterologous expression of the aranciamycin biosynthetic gene cluster revealed a new flexible glycosyltransferase, AraGT, which accepts different nucleotide-activated sugars (D -amicetose, L -rhodinose, L -rhamnose and L -axenose) The newly generated aranciamycin derivatives displayed antiproliferative activity against MaTu and MCF7 cells; this shows that the deoxysugar is important for anticancer activity. [source] Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloidsFEBS JOURNAL, Issue 8 2002Irina Gerasimenko Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (N,-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation. [source] Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39FEBS JOURNAL, Issue 19 2001Jacques-Edouard Germond The genes responsible for exopolysaccharide (EPS) synthesis in Streptococcus thermophilus Sfi39 were identified on a 20-kb genomic fragment. The two genes, epsE and epsG, were shown to be involved in EPS synthesis as their disruption lead to the loss of the ropy phenotype. Several naturally selected nonropy mutants were isolated, one acquired an insertion sequence (IS)-element (IS905) in the middle of the eps gene cluster. The eps gene cluster was cloned and transferred into a nonEPS-producing heterologous host, Lactococcus lactis MG1363. The EPS produced was shown by chemical analysis and NMR spectroscopy to be identical to the EPS produced by S. thermophilus Sfi39. This demonstrated first that all genes needed for EPS production and export were present in the S. thermophilus Sfi39 eps gene cluster, and second that the heterologous production of an EPS was possible by transfer of the complete eps gene cluster alone, provided that the heterologous host possessed all necessary genetic information for precursor synthesis. [source] Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxinFEBS JOURNAL, Issue 14 2001Goro Taguchi Scopoletin is one of the phytoalexins in tobacco. Cells of the T-13 cell line (Nicotiana tabacum L. Bright Yellow) accumulate a large amount of scopoletin, also known as 7-hydroxy-6-methoxycoumarin, as a glucoconjugate, scopolin, in vacuoles. We report here the molecular cloning of glucosyltransferases that can catalyze the glucosylation of many kinds of secondary metabolites including scopoletin. Two cDNAs encoding glucosyltransferase (NtGT1a and NtGT1b) were isolated from a cDNA library derived from the tobacco T-13 cell line by screening with heterologous cDNAs as a probe. The deduced amino-acid sequences of NtGT1a and NtGT1b exhibited 92% identity with each other, ,,20,50% identities with other reported glucosyltransferases. Heterologous expression of these genes in Escherichia coli showed that the recombinant enzymes had glucosylation activity against both flavonoids and coumarins. They also strongly reacted with 2-naphthol as a substrate. These recombinant enzymes can utilize UDP-glucose as the sugar donor, but they can also utilize UDP-xylose as a weak donor. RNA blot analysis showed that these genes are induced by salicylic acid and auxin, but the time course of the expression was different. This result is similar to the changes in scopoletin glucosylation activity in these tobacco cells after addition of these plant growth regulators. These results might suggest that one of the roles of the products of these genes is scopoletin glucosylation, in response to salicylic acid and/or auxin, together with the other glucosyltransferases in tobacco cells. [source] Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector systemFEMS MICROBIOLOGY LETTERS, Issue 2 2002Sascha Doekel Abstract A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins. [source] Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiaeFEMS YEAST RESEARCH, Issue 8 2009Mariska Lilly Abstract The yeast Saccharomyces cerevisiae was genetically modified to assemble a minicellulosome on its cell surface by heterologous expression of a chimeric scaffoldin protein from Clostridium cellulolyticum under the regulation of the phosphoglycerate kinase 1 (PGK1) promoter and terminator regulatory elements, together with the ,-xylanase 2 secretion signal of Trichoderma reesei and cell wall protein 2 (Cwp2) of S. cerevisiae. Fluorescent microscopy and Far Western blot analysis confirmed that the Scaf3p is targeted to the yeast cell surface and that the Clostridium thermocellum cohesin domain is functional in yeast. Similarly, functionality of the C. thermocellum dockerin domain in yeast is shown by binding to the Scaf3 protein in Far Western blot analysis. Phenotypic evidence for cohesin,dockerin interaction was also established with the detection of a twofold increase in tethered endoglucanase enzyme activity in S. cerevisiae cells expressing the Scaf3 protein compared with the parent strain. This study highlights the feasibility to future design of enhanced cellulolytic strains of S. cerevisiae through emulation of the cellulosome concept. Potentially, Scaf3p-armed yeast could also be developed into an alternative cell surface display strategy with various tailor-made applications. [source] Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeastFEMS YEAST RESEARCH, Issue 3 2009Marine Froissard Abstract Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies. [source] Significance of the KlLAC1 gene in glucosylceramide production by Kluyveromyces lactisFEMS YEAST RESEARCH, Issue 6 2008Naoya Takakuwa Abstract Each of the 12 genes involved in the synthesis of glucosylceramide was overexpressed in cells of Kluyveromyces lactis to construct a strain accumulating a high quantity of glucosylceramide. Glucosylceramide was doubled by the KlLAC1 gene, which encodes ceramide synthase, and not by 11 other genes, including the KlLAG1 gene, a homologue of KlLAC1. Disruption of the KlLAC1 gene reduced the content below the detection level. Heterologous expression of the KlLAC1 gene in the cells of Saccharomyces cerevisiae caused the accumulation of ceramide, composed of C18 fatty acid. The KlLAC1 protein preferred long-chain (C18) fatty acids to very-long-chain (C26) fatty acids for condensation with sphingoid bases and seemed to supply a ceramide moiety as the substrate for the formation of glucosylceramide. When the amino acid sequences of ceramide synthase derived from eight yeast species were compared, LAC1 proteins from five species producing glucosylceramide were clearly discriminated from those of the other three species and all LAG1 proteins. The LAC1 protein of K. lactis is the enzyme that plays a crucial role in the synthesis of glucosylceramide. [source] Characterization and heterologous expression of a novel lysophospholipase gene from Antrodia cinnamomeaJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2010K.-H. Hsu Abstract Aims:, A novel lysophospholipase (LysoPL) from the basidiomycetous fungi Antrodia cinnamomea named ACLysoPL was cloned, heteroexpressed in Escherichia coli and characterized. Methods and Results:, The gene encoding ACLysoPL was obtained from expressed sequence tags from A. cinnamomea. The full length of this gene has a 945 -bp open reading frame encoding 314 amino acids with a molecular weight of 35·5 kDa. ACLysoPL contains a lipase consensus sequence (GXSXG) motif and a Ser,His,Asp catalytic triad. A putative peroxisomal targeting signal type 1 was found in the C-terminal. Heterologous expression of ACLysoPL in E. coli showed that the enzyme preferentially hydrolyses long-chain acyl esterases at pH 7 and 30°C. ACLysoPL is a psychrophilic enzyme about 40% of whose maximum activity remained at 4°C. The LysoPL activities with lysophospholipids as substrate were analysed by gas chromatography/mass spectrometry. Conclusion:, We have identified and characterized a gene named ACLysoPL encoding a protein performing LysoPL and esterase activities. Significance and Impact of the Study:, This is the first LysoPL of A. cinnamomea identified and characterized at the molecular level. [source] NG2 proteoglycan mediates ,1 integrin-independent cell adhesion and spreading on collagen VIJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2002Emmanuelle Tillet Abstract Collagens V and VI have been previously identified as specific extracellular matrix (ECM) ligands for the NG2 proteoglycan. In order to study the functional consequences of NG2/collagen interactions, we have utilized the GD25 cell line, which does not express the major collagen-binding ,1 integrin heterodimers. Use of these cells has allowed us to study ,1 integrin-independent phenomena that are mediated by binding of NG2 to collagens V and VI. Heterologous expression of NG2 in the GD25 line endows these cells with the capability of attaching to surfaces coated with collagens V and VI. The specificity of this effect is emphasized by the failure of NG2-positive GD25 cells to attach to other collagens or to laminin-1. More importantly, NG2-positive GD25 cells spread extensively on collagen VI. ,1 integrin-independent extension of ruffling lamellipodia demonstrates that engagement of NG2 by the collagen VI substratum triggers signaling events that lead to rearrangement of the actin cytoskeleton. In contrast, even though collagens V and VI each bind to the central segment of the NG2 ectodomain, collagen V engagement of NG2 does not trigger cell spreading. The distinct morphological consequences of NG2/collagen VI and NG2/collagen V interaction indicate that closely-related ECM ligands for NG2 differ in their ability to initiate transmembrane signaling via engagement of the proteoglycan. J. Cell. Biochem. 86: 726,736, 2002. © 2002 Wiley-Liss, Inc. [source] Overexpression and Characterization of the Rhodobacter sphaeroides PufX Membrane Protein in Escherichia coli,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2007Shiho Onodera Heterologous expression of the PufX membrane protein from purple photosynthetic bacterium Rhodobacter sphaeroides was attempted by using Escherichia (E.) coli cells. The PufX was overexpressed as a recombinant protein with a histidine tag added to the carboxyl terminus, and can be extracted from the cell membrane by various detergents. Circular dichroism measurements showed that the expressed PufX protein had ,-helix contents of 29% in organic solvents and 22,26% in 0.8,2.0% (w/v) n -octyl ,- d -glucopyranoside solutions, suggesting that the PufX contains a substantial ,-helical region composed of 18,22 amino acids. The PufX expressed in E. coli was examined by reconstitution experiments with LH1 ,- and ,-polypeptides and bacteriochlorophyll a. It was shown that the PufX inhibited not only the reconstitution of the LH1 complex, but also the formation of the B820 subunit type complex at high concentrations, indicating that the expressed PufX is biologically active. Large-scale expression of the functional PufX membrane protein provides sufficient quantity for further biophysical and structural analyses of its biological function, and adds another example for producing highly hydrophobic integral membrane proteins using the E. coli expression system. [source] Heterologous expression of Arabidopsis H+ -pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)PLANT CELL & ENVIRONMENT, Issue 2 2010ZHIGANG LI ABSTRACT The Arabidopsis vacuolar H+ -pyrophosphatase (AVP1), when over-expressed in transgenic (TG) plants, regulates root and shoot development via facilitation of auxin flux, and enhances plant resistance to salt and drought stresses. Here, we report that TG perennial creeping bentgrass plants over-expressing AVP1 exhibited improved resistance to salinity than wild-type (WT) controls. Compared to WT plants, TGs grew well in the presence of 100 mm NaCl, and exhibited higher tolerance and faster recovery from damages from exposure to 200 and 300 mm NaCl. The improved performance of the TG plants was associated with higher relative water content (RWC), higher Na+ uptake and lower solute leakage in leaf tissues, and with higher concentrations of Na+, K+, Cl - and total phosphorus in root tissues. Under salt stress, proline content was increased in both WT and TG plants, but more significantly in TGs. Moreover, TG plants exhibited greater biomass production than WT controls under both normal and elevated salinity conditions. When subjected to salt stress, fresh (FW) and dry weights (DW) of both leaves and roots decreased more significantly in WT than in TG plants. Our results demonstrated the great potential of genetic manipulation of vacuolar H+ -pyrophosphatase expression in TG perennial species for improvement of plant abiotic stress resistance. [source] Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificitiesPLANT CELL & ENVIRONMENT, Issue 4 2005BARBARA DE CONINCK ABSTRACT The genome of Arabidopsis thaliana contains six putative cell-wall type invertase genes (AtcwINV1-6). Heterologous expression of AtcwINV1, 3 and 6 cDNAs in Pichia pastoris revealed that the enzymes encoded by AtcwINV3 and 6 did not show invertase activity. Instead, AtcwINV3 is a 6-FEH and AtcwINV6 is a fructan exohydrolase (FEH) that can degrade both inulin and levan-type fructans. For AtcwINV6 it is proposed to use the term (6&1) FEH. In contrast, AtcwINV1 is a typical invertase. FEH activity was also detected in crude extracts of different parts of Arabidopsis. To verify that the FEH activity of AtcwINV3 and 6 were not artefacts of the heterologous expression system, the protein corresponding to AtcwINV3 was isolated from whole Arabidopsis plants and indeed showed only 6-FEH activity and no invertase activity. Although no fructans can be detected in Arabidopsis plants, it is shown that kestoses (trimers) can be synthesized in crude leaf extracts. The putative physiological significance of FEH in so-called non-fructan plants is discussed. [source] Biosynthesis of biodegradable polyesters from renewable carbon sources by recombinant bacteria ,POLYMER INTERNATIONAL, Issue 10 2002Seiichi Taguchi Abstract Based on the metabolic pathways for polyhydroxyalkanoate (PHA) biosynthesis, we succeeded in establishing the recombinant Pseudomonas sp 61-3 strains that synthesize random copolyesters consisting of (R)-3-hydroxybutyrate (3HB) and (R)-medium-chain-length 3-hydroxyalkanoate (mcl-3HA) units, P(3HB- co -3HA), with very high 3HB compositions (up to 94 mol%) from glucose. The mechanical properties of P(94% 3HB- co -3HA) copolyester were very similar to those of low-density polyethylene. We carried out the molecular cloning and characterization of a PhaGPs encoding (R)-3-hydroxyacyl-acyl carrier protein coenzyme A transferase of Pseudomonas sp 61-3. It was concluded that the PhaGPs gene product is involved in providing mcl-3HA-CoA from glucose in the original strain. Heterologous expression of the PhaGPs gene with the PhaC1Ps gene encoding PHA synthase from Pseudomonas sp 61-3 was performed in the PhbCRe negative mutant (PHB,4) of Ralstonia eutropha. The recombinant PHB,4 strain successfully produced PHA copolyesters consisting of 3HB and mcl-3HA units of 6,12 carbon atoms from sugars. The 3HB fraction in copolyesters was very high (95,97 mol%). The PHA content in the recombinant strain could further be increased by the additional introduction of the PhbABRe genes from R eutropha encoding ,-ketothiolase and NADPH-dependent acetoacetyl-coenzyme A reductase. Moreover, we have established an in vivo assay system to analyze mutational effects of R eutropha synthase (PhbCRe) on the level of PHB accumulation in recombinant strains of Escherichia coli. The activity of the PhbCRe could be efficiently estimated using the in vivo system constructed here, and would be useful for in vitro evolution of PhbCRe. © 2002 Society of Chemical Industry [source] Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in ArabidopsisTHE PLANT JOURNAL, Issue 5 2009Anthony L. Schilmiller Summary The initial reactions of the phenylpropanoid pathway convert phenylalanine to p -coumaroyl CoA, a branch point metabolite from which many phenylpropanoids are made. Although the second enzyme of this pathway, cinnamic acid 4-hydroxylase (C4H), is well characterized, a mutant for the gene encoding this enzyme has not yet, to our knowledge, been identified, presumably because knock-out mutations in this gene would have severe phenotypes. This work describes the characterization of an allelic series of Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, each of which harbor mis-sense mutations in C4H (At2g30490). Heterologous expression of the mutant proteins in Escherichia coli yields enzymes that exhibit P420 spectra, indicative of mis-folded proteins, or have limited ability to bind substrate, indicating that the mutations we have identified affect protein stability and/or enzyme function. In agreement with the early position of C4H in phenylpropanoid metabolism, ref3 mutant plants accumulate decreased levels of several different classes of phenylpropanoid end-products, and exhibit reduced lignin deposition and altered lignin monomer content. Furthermore, these plants accumulate a novel hydroxycinnamic ester, cinnamoylmalate, which is not found in the wild type. The decreased C4H activity in ref3 also causes pleiotropic phenotypes, including dwarfism, male sterility and the development of swellings at branch junctions. Together, these observations indicate that C4H function is critical to the normal biochemistry and development of Arabidopsis. [source] Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thalianaTHE PLANT JOURNAL, Issue 6 2005Yeon-Ok Kim Summary Glycine-rich RNA-binding proteins (GR-RBPs) have been implicated to play roles in post-transcriptional regulation of gene expression in plants under various stress conditions, but the functional roles of GR-RBPs under stress conditions remain to be verified. Here, we examine the biological roles of a GR-RBP, designated atRZ-1a, in Arabidopsis thaliana under stress conditions. atRZ-1a was expressed ubiquitously in various Arabidopsis organs including stems, roots, leaves, flowers, and siliques. The transcript level of atRZ-1a increased markedly by cold stress, whereas its expression was marginally downregulated by drought stress or abscisic acid treatment. Germination and seedling growth of the loss-of-function mutants were retarded remarkably compared with those of the wild type under cold stress. In contrast, the transgenic Arabidopsis plants that overexpress atRZ-1a displayed earlier germination and better seedling growth than the wild type under cold stress. Moreover, the atRZ-1a-overexpressing transgenic Arabidopsis plants were more freezing tolerant than the wild-type plants. Heterologous expression of atRZ-1a in Escherichia coli demonstrated that the E. coli cells expressing atRZ-1a displayed much higher growth rate than the non-transformed cells after cold shock. These results provide evidence that atRZ-1a affects seed germination and seedling growth under low temperature and plays a role in the enhancement of freezing tolerance in Arabidopsis plants. [source] Heterologous expression of the biosynthetic gene clusters of coumermycin A1, clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strainsBIOPOLYMERS, Issue 9 2010Katrin Flinspach Abstract The biosynthetic gene clusters of the aminocoumarin antibiotics clorobiocin and coumermycin A1 and of the liponucleoside antibiotic caprazamycin were stably integrated into the genomes of different host strains derived from Streptomyces coelicolor A3(2). For the heterologous expression of clorobiocin derivatives in a chemically defined medium, inclusion of 0.6% of the siloxylated ethylene oxide/propylene oxide copolymer Q2-5247 into the growth medium proved to result in a 4.8-fold increase of productivity. Presumably, this copolymer acts as an oxygen carrier. The additional inclusion of cobalt chloride (0.2,2 mg l,1) dramatically increased the percentage of the desired compound clorobiocin within the total produced clorobiocin derivatives. This is very likely due to a stimulation of a cobalamin-dependent methylation reaction catalyzed by the enzyme CloN6 of clorobiocin biosynthesis. All three investigated host strains (S. coelicolor M512, M1146 and M1154) gave similar production rates of total clorobiocin derivatives (on average, 158 mg l,1 in the presence of 0.6% Q2-5247 and 0.2 mg l,1 CoCl2). In contrast, heterologous production of caprazamycin derivatives was optimal in strain M1154 (amounts of 152 mg l,1 on average). © 2010 Wiley Periodicals, Inc. Biopolymers 93: 823,832, 2010. [source] Heterologous expression, crystallization and preliminary X-ray characterization of CcCel6C, a glycoside hydrolase family 6 enzyme from the basidiomycete Coprinopsis cinereaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 2 2009Yuma Kurakata CcCel6C is a gene that encodes a glycoside hydrolase family 6 (GH6) enzyme in the Coprinopsis cinerea genome. In the evolutionary tree of GH6 enzymes, the encoded enzyme was closely related to Cel6B from Humicola insolens, previously called endoglucanase VI, while its amino-acid sequence revealed a region corresponding to the C-terminal active-site-enclosing loop typical of cellobiohydrolase II. Here, the crystallization of CcCel6C produced in Escherichia coli is reported. The square prismatic crystal belonged to the triclinic space group P1, with unit-cell parameters a = 44.04, b = 45.11, c = 48.90,Å, , = 77.81, , = 87.34, , = 68.79°. Diffraction data were collected to 1.6,Å resolution. [source] Heterologous expression and characterization of recombinant glycerol dehydratase from Klebsiella pneumoniae in Escherichia coliBIOTECHNOLOGY JOURNAL, Issue 6 2007Fenghuan Wang Abstract Glycerol dehydratase (EC 4.2.1.30), as one of the key enzymes in converting glycerol to the valuable intermediate 1,3-propanediol, is important for biochemical industry. The dhaB genes encoding coenzyme B12 -dependent glycerol dehydratase in Klebsiella pneumoniae were cloned and expressed in Escherichia coli. An effective co-expression system of multiple subunits protein was constructed. Heterologous expression vectors were constructed using the splicing by overlap extension-PCR technique to co-express the three subunits of the glycerol dehydratase. After induction by isopropyl-,- D -thiogalactopyranoside, SDS-PAGE analysis revealed that: (i) only the , subunit of glycerol dehydratase was expressed in direct expression system, (ii) the three subunits of glycerol dehydratase with predicted molecular massess of 64 (agr;), 22 (,), and 16 kDa (,) were expressed simultaneously in co-expression system, and (iii) the fusion expression system expressed the fusion protein of 99 kDa. Enzyme assay showed that the activities of three heterologous expression products were 27.4, 2.3, and 0.2 U/mg. The highest enzyme activity was almost 17 times of that in K. pneumoniae. The recombinant enzyme was purified and biochemically characterized. The apparent Km values of the enzyme for coenzyme B12 and 1, 2-propanediol were 8.5 nM and 1.2 mM, respectively. The enzyme showed maximum activity at pH 8.5 and 37°C. [source] Aspergillus niger lipase: Heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activationBIOTECHNOLOGY PROGRESS, Issue 2 2009Zhengyu Shu Abstract Aspergillus niger lipase (ANL) is an important biocatalyst in the food processing industry. However, there is no report of its detailed three-dimensional structure because of difficulties in crystallization. In this article, based on experimental data and bioinformational analysis results, the structural features of ANL were simulated. Firstly, two recombinant ANLs expressed in Pichia pastoris were purified to homogeneity and their corresponding secondary structure compositions were determined by circular dichroism spectra. Secondly, the primary structure, the secondary structure and the three-dimensional structure of ANL were modeled by comparison with homologous lipases with known three-dimensional structures using the BioEdit software, lipase engineering database (http://www.led.uni-stuttgart.de/), PSIPRED server and SwissModel server. The predicted molecular structure of ANL presented typical features of the ,/, hydrolase fold including positioning of the putative catalytic triad residues and the GXSXG signature motif. Comparison of the predicted three-dimensional structure of ANL with the X-ray three-dimensional structure of A. niger feruloyl esterase showed that the functional difference of interfacial activation between lipase and esterase was concerned with the difference in position of the lid. Our three-dimensional model of ANL helps to modify lipase structure by protein engineering, which will further expand the scope of application of ANL. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] The P/Q-type voltage-dependent calcium channel: a therapeutic target in spinocerebellar ataxia type 6ACTA NEUROLOGICA SCANDINAVICA, Issue 5 2007J. Gazulla Background,,, Voltage-dependent calcium channels (VDCCs) are heteromultimeric complexes that mediate calcium influx into cells; the ,1A subunit is the pore-forming subunit specific to the neuronal P/Q-type VDCCs. Spinocerebellar ataxia type 6 (SCA 6) is caused by an abnormal expansion of a CAG repeat in CACNA1A, which encodes the ,1A subunit. Heterologous expression of mutated ,1A subunits resulted in increased channel inactivation in electrophysiological tests. Gabapentin and pregabalin interact with the ,2, subunit of the VDCCs and improved ataxia in cases of cortical cerebellar atrophy (CCA) and ataxia-telangiectasia. Materials and methods,,, A bibliographical review was performed in order to find out if gabapentin and pregabalin coud prove useful in the treatment of SCA 6. Results,,, Gabapentin and pregabalin slowed the rate of inactivation in recombinant P/Q-type VDCCs. SCA 6 shares neuropathological findings with CCA. Conclusions,,, On the basis of the neuropathological identity of SCA 6 with CCA, and of the effect of gabapentin and pregabalin on recombinant VDCCs the authors put forward the hypothesis that these drugs might prove beneficial in SCA 6, as the ataxia would be expected to improve. The authors hope that researchers working with this illness will be encouraged to undertake the appropriate clinical and experimental work. [source] Expression of multiple P2Y receptors by MDCK-D1 cells: P2Y1 receptor cloning and signalingDRUG DEVELOPMENT RESEARCH, Issue 1 2003Richard J. Hughes The Madin Darby canine kidney (MDCK) cell line, a well-differentiated renal epithelial cell line, is a useful model to examine P2Y receptor signaling and response. Our studies with MDCK-D1, a clonal isolate, demonstrate that these cells release ATP in response to mechanical stimulation and activation of certain G-protein-coupled receptors. Reverse transcriptase-polymerase chain reaction (RT-PCR) studies document that MDCK cells express multiple P2Y receptors, including P2Y1, P2Y2, P2Y6, and P2Y11 receptors. We isolated cDNAs for several of the P2Y receptor genes and expressed these in cells, such as the 1321N1 astrocytoma cell line, that lack native P2Y receptor expression. We report here the molecular cloning of the MDCK P2Y1 receptor, heterologous expression in 1321N1 cells, and the ability of the heterologously expressed receptors to increase intracellular calcium and phosphoinositide hydrolysis. ADP, methylthioATP, and ADP,S are agonists with the greatest potency, while ATP and ATP,S show lower potency and efficacy, and benzoylbenzoylATP, UTP, and UDP lack efficacy at the cloned P2Y1 receptor. Several antagonists, including MRS2179, A3P5PS, suramin, and PPADS blocked response at the cloned P2Y1 receptors. With their ability to respond to ADP and ATP, P2Y1 receptors, along with other P2Y receptors expressed in MDCK cells, contribute to the response of these cells to ATP (or its breakdown product, ADP) released from the cells and to exogenously added nucleotides. Drug Dev. Res. 59:1,7, 2003. © 2003 Wiley-Liss, Inc. [source] A unique lipoylation system in the ArchaeaFEBS JOURNAL, Issue 15 2009Lipoylation in Thermoplasma acidophilum requires two proteins Members of the 2-oxoacid dehydrogenase multienzyme complex family play a key role in the pathways of central metabolism. Post-translational lipoylation of the dihydrolipoyl acyltransferase component of these complexes is essential for their activity, the lipoyllysine moiety performing the transfer of substrates and intermediates between the different active sites within these multienzyme systems. We have previously shown that the thermophilic archaeon, Thermoplasma acidophilum, has a four-gene cluster encoding the components of such a complex, which, when recombinantly expressed in Escherichia coli, can be assembled into an active multienzyme in vitro. Crucially, the E. coli host carries out the required lipoylation of the archaeal dihydrolipoyl acyltransferase component. Because active 2-oxoacid dehydrogenase multienzyme complexes have never been detected in any archaeon, the question arises as to whether Archaea possess a functional lipoylation system. In this study, we report the cloning and heterologous expression of two genes from Tp. acidophilum whose protein products together show significant sequence identity with the single lipoate protein ligase enzyme of bacteria. We demonstrate that both recombinantly expressed Tp. acidophilum proteins are required for lipoylation of the acyltransferase, and that the two proteins associate together to carry out this post-translational modification. From the published DNA sequences, we suggest the presence of functional transcriptional and translational regulatory elements, and furthermore we present preliminary evidence that lipoylation occurs in vivo in Tp. acidophilum. This is the first report of the lipoylation machinery in the Archaea, which is unique in that the catalytic activity is dependent on two separate gene products. Structured digital abstract ,,MINT-7103712: E2lipD (uniprotkb:Q9HIA5), CTD (uniprotkb:Q9HKT2) and LplA (uniprotkb:Q9HKT1) physically interact (MI:0915) by molecular sieving (MI:0071) [source] Comparative biochemical and functional studies of family I soluble inorganic pyrophosphatases from photosynthetic bacteriaFEBS JOURNAL, Issue 15 2007María R. Gómez-García Soluble inorganic pyrophosphatases (inorganic diphosphatases, EC 3.6.1.1) were isolated and characterized from three phylogenetically diverse cyanobacteria , Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120, and Pseudanabaena sp. PCC 6903 , and one anoxygenic photosynthetic bacterium, Rhodopseudomonas viridis (purple nonsulfur). These enzymes were found to be family I soluble inorganic pyrophosphatases with c. 20 kDa subunits with diverse oligomeric structures. The corresponding ppa genes were cloned and functionally validated by heterologous expression. Cyanobacterial family I soluble inorganic pyrophosphatases were strictly Mg2+ -dependent enzymes. However, diverse cation cofactor dependence was observed for enzymes from other groups of photosynthetic bacteria. Immunochemical studies with antibodies to cyanobacterial soluble inorganic pyrophosphatases showed crossreaction with orthologs of other main groups of phototrophic prokaryotes and suggested a close relationship with the enzyme of heliobacteria, the nearest photosynthetic relatives of cyanobacteria. A slow-growing Escherichia coli JP5 mutant strain, containing a very low level of soluble inorganic pyrophosphatase activity, was functionally complemented up to wild-type growth rates with ppa genes from diverse photosynthetic prokaryotes expressed under their own promoters. Overall, these results suggest that the bacterial family I soluble inorganic pyrophosphatases described here have retained functional similarities despite their genealogies and their adaptations to diverse metabolic scenarios. [source] Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2 -producing ligninolytic enzymeFEBS JOURNAL, Issue 21 2006Patricia Ferreira Aryl-alcohol oxidase provides H2O2 for lignin biodegradation, a key process for carbon recycling in land ecosystems that is also of great biotechnological interest. However, little is known of the structural determinants of the catalytic activity of this fungal flavoenzyme, which oxidizes a variety of polyunsaturated alcohols. Different alcohol substrates were docked on the aryl-alcohol oxidase molecular structure, and six amino acid residues surrounding the putative substrate-binding site were chosen for site-directed mutagenesis modification. Several Pleurotus eryngii aryl-alcohol oxidase variants were purified to homogeneity after heterologous expression in Emericella nidulans, and characterized in terms of their steady-state kinetic properties. Two histidine residues (His502 and His546) are strictly required for aryl-alcohol oxidase catalysis, as shown by the lack of activity of different variants. This fact, together with their location near the isoalloxazine ring of FAD, suggested a contribution to catalysis by alcohol activation, enabling its oxidation by flavin-adenine dinucleotide (FAD). The presence of two aromatic residues (at positions 92 and 501) is also required, as shown by the conserved activity of the Y92F and F501Y enzyme variants and the strongly impaired activity of Y92A and F501A. By contrast, a third aromatic residue (Tyr78) does not seem to be involved in catalysis. The kinetic and spectral properties of the Phe501 variants suggested that this residue could affect the FAD environment, modulating the catalytic rate of the enzyme. Finaly, L315 affects the enzyme kcat, although it is not located in the near vicinity of the cofactor. The present study provides the first evidence for the role of aryl-alcohol oxidase active site residues. [source] Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxinFEBS JOURNAL, Issue 14 2001Goro Taguchi Scopoletin is one of the phytoalexins in tobacco. Cells of the T-13 cell line (Nicotiana tabacum L. Bright Yellow) accumulate a large amount of scopoletin, also known as 7-hydroxy-6-methoxycoumarin, as a glucoconjugate, scopolin, in vacuoles. We report here the molecular cloning of glucosyltransferases that can catalyze the glucosylation of many kinds of secondary metabolites including scopoletin. Two cDNAs encoding glucosyltransferase (NtGT1a and NtGT1b) were isolated from a cDNA library derived from the tobacco T-13 cell line by screening with heterologous cDNAs as a probe. The deduced amino-acid sequences of NtGT1a and NtGT1b exhibited 92% identity with each other, ,,20,50% identities with other reported glucosyltransferases. Heterologous expression of these genes in Escherichia coli showed that the recombinant enzymes had glucosylation activity against both flavonoids and coumarins. They also strongly reacted with 2-naphthol as a substrate. These recombinant enzymes can utilize UDP-glucose as the sugar donor, but they can also utilize UDP-xylose as a weak donor. RNA blot analysis showed that these genes are induced by salicylic acid and auxin, but the time course of the expression was different. This result is similar to the changes in scopoletin glucosylation activity in these tobacco cells after addition of these plant growth regulators. These results might suggest that one of the roles of the products of these genes is scopoletin glucosylation, in response to salicylic acid and/or auxin, together with the other glucosyltransferases in tobacco cells. [source] Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector systemFEMS MICROBIOLOGY LETTERS, Issue 2 2002Sascha Doekel Abstract A major obstacle in investigating the biosynthesis of pharmacologically important peptide antibiotics is the heterologous expression of the giant biosynthetic genes. Recently, the genetically engineered strain Bacillus subtilis KE30 has been reported as an excellent surrogate host for the heterologous expression of an entire nonribosomal peptide synthetase (NRPS) gene cluster. In this study, we expand the applicability of this strain, by the development of four Escherichia coli/B. subtilis shuttle expression vectors. Comparative overproduction of hybrid NRPS proteins derived from both organisms revealed a significant beneficial effect of overproducing proteins in B. subtilis KE30 as underlined by the production of stable nondegradative proteins, as well as the formation of active phosphopantetheinylated holo-proteins. [source] Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiaeFEMS YEAST RESEARCH, Issue 8 2009Mariska Lilly Abstract The yeast Saccharomyces cerevisiae was genetically modified to assemble a minicellulosome on its cell surface by heterologous expression of a chimeric scaffoldin protein from Clostridium cellulolyticum under the regulation of the phosphoglycerate kinase 1 (PGK1) promoter and terminator regulatory elements, together with the ,-xylanase 2 secretion signal of Trichoderma reesei and cell wall protein 2 (Cwp2) of S. cerevisiae. Fluorescent microscopy and Far Western blot analysis confirmed that the Scaf3p is targeted to the yeast cell surface and that the Clostridium thermocellum cohesin domain is functional in yeast. Similarly, functionality of the C. thermocellum dockerin domain in yeast is shown by binding to the Scaf3 protein in Far Western blot analysis. Phenotypic evidence for cohesin,dockerin interaction was also established with the detection of a twofold increase in tethered endoglucanase enzyme activity in S. cerevisiae cells expressing the Scaf3 protein compared with the parent strain. This study highlights the feasibility to future design of enhanced cellulolytic strains of S. cerevisiae through emulation of the cellulosome concept. Potentially, Scaf3p-armed yeast could also be developed into an alternative cell surface display strategy with various tailor-made applications. [source] |