Home About us Contact | |||
Heterojunction Organic Solar Cells (heterojunction + organic_solar_cell)
Kinds of Heterojunction Organic Solar Cells Selected AbstractsConjugated Polymer Based on Polycyclic Aromatics for Bulk Heterojunction Organic Solar Cells: A Case Study of Quadrathienonaphthalene Polymers with 2% EfficiencyADVANCED FUNCTIONAL MATERIALS, Issue 4 2010Shengqiang Xiao Abstract Polycyclic aromatics offer great flexibility in tuning the energy levels and bandgaps of resulting conjugated polymers. These features have been exploited in the recent examples of benzo[2,1- b:3,4- b']dithiophene (BDT)-based polymers for bulk heterojunction (BHJ) photovoltaics (ACS Appl. Mater. Interfaces2009, 1, 1613). Taking one step further, a simple oxidative photocyclization is used here to convert the BDT with two pendent thiophene units into an enlarged planar polycyclic aromatic ring,quadrathienonaphthalene (QTN). The reduced steric hindrance and more planar structure promotes the intermolecular interaction of QTN- based polymers, leading to increased hole mobility in related polymers. As-synthesized homopolymer (HMPQTN) and donor,acceptor polymer (PQTN - BT) maintain a low highest occupied molecular orbital (HOMO) energy level, ascribable to the polycyclic aromatic (QTN) moiety, which leads to a good open-circuit voltage in BHJ devices of these polymers blended with PCBM ([6,6]-phenyl-C61 -butyric acid methyl ester; HMPQTN: 0.76,V, PQTN - BT: 0.72,V). The donor,acceptor polymer (PQTN - BT) has a smaller optical bandgap (1.6,eV) than that of HMPQTN (2.0,eV), which explains its current (5.69,mA,cm,2) being slightly higher than that of HMPQTN (5.02,mA,cm,2). Overall efficiencies over 2% are achieved for BHJ devices fabricated from either polymer with PCBM as the acceptor. [source] Evaluating Carrier Accumulation in Degraded Bulk Heterojunction Organic Solar Cells by a Thermally Stimulated Current TechniqueADVANCED FUNCTIONAL MATERIALS, Issue 24 2009Kenji Kawano Abstract Here, the initial photo-degradation of encapsulated P3HT:PCBM bulk heterojunction organic solar cells is investigated. The degraded device is recovered by thermal annealing treatment. Thermally stimulated current measurements reveal that the cause of photo-degradation is carrier accumulation and that the degraded organic solar cell has two broad trap levels, of 0.71 and 0.81,eV. These traps are independent of the thickness of the photoactive layers, the mixing ratio of the photoactive materials and the cathode materials. In addition, it is confirmed that there is a close relationship between the degree of degradation and the amount of accumulated charge carriers. [source] Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar CellsADVANCED FUNCTIONAL MATERIALS, Issue 5 2009Pavel A. Troshin Abstract The preparation of 27 different derivatives of C60 and C70 fullerenes possessing various aryl (heteroaryl) and/or alkyl groups that are appended to the fullerene cage via a cyclopropane moiety and their use in bulk heterojunction polymer solar cells is reported. It is shown that even slight variations in the molecular structure of a compound can cause a significant change in its physical properties, in particular its solubility in organic solvents. Furthermore, the solubility of a fullerene derivative strongly affects the morphology of its composite with poly(3-hexylthiophene), which is commonly used as active material in bulk heterojunction organic solar cells. As a consequence, the solar cell parameters strongly depend on the structure and the properties of the fullerene-based material. The power conversion efficiencies for solar cells comprising these fullerene derivatives range from negligibly low (0.02%) to considerably high (4.1%) values. The analysis of extensive sets of experimental data reveals a general dependence of all solar cell parameters on the solubility of the fullerene derivative used as acceptor component in the photoactive layer of an organic solar cell. It is concluded that the best material combinations are those where donor and acceptor components are of similar and sufficiently high solubility in the solvent used for the deposition of the active layer. [source] Direct Comparison of Highly Efficient Solution- and Vacuum-Processed Organic Solar Cells Based on Merocyanine DyesADVANCED MATERIALS, Issue 37 2010Nils M. Kronenberg Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds (see figure) are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency. [source] Organic Electronics: Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives (Adv. Mater.ADVANCED MATERIALS, Issue 8 20108/2010) The fabrication of bulk heterojunction organic solar cells from solution-casting techniques using low-cost materials makes them a promising new technology for converting sunlight into electricity. T.-Q. Nguyen, G. C. Bazan, et al. report on p. E63 that undesirable large-scale aggregation and phase separation that may arise during deposition can be reduced by incorporating a small amount of a well-chosen solvent additive. [source] Organic Solar Cells Using Transparent SnO2,F Anodes,ADVANCED MATERIALS, Issue 15 2006F. Yang Copper phthalocyanine/C60/2,9- dimethyl-4,7-diphenyl-1,10-phenanthroline/Ag heterojunction organic solar cells are grown on low-cost SnO2,F-coated glass using organic vapor-phase deposition (see figure). The bulk heterojunction (BHJ) solar cell with nanoscale CuPc protrusions shows a 2.5,% power-conversion efficiency under 1 sun illumination. The high efficiency in BHJ solar cells is attributed to the increased exciton dissociation efficiency at the CuPc/C60 interface. [source] |